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a b s t r a c t

The various locking phenomena in a linear Timoshenko curved beam element are identified in the

context of out-of-plane deformations. A study on performance sensitivity of straight and curved

Timoshenko beam finite elements to flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness

ratios are carried out. The use of consistent field interpolation for shear strain is shown to eliminate

shear locking effects, which depends on the ratio EI/GA, in both straight and curved beams. However, in

the case of curved beam, a curvature related additional spurious stiffening which depends on EI/GJ ratio is

observed. This additional stiffening effect is attributed to inconsistencies present in the out-of-plane

flexure and torsion strain definitions, which are critically examined to characterize their adverse effects

on the solution convergence. The results reveal the existence of two additional locking phenomena

which we introduce here as flexure locking and torsion locking. The field consistency requirements to

eliminate these locking effects have been identified. In the numerical examples, the field consistency in

flexure and torsion strains is applied, independently and in combination, to understand the hidden

perspectives of these locking phenomena. The regimes where these locking effects become significant

are identified based on the relative magnitudes of flexural and torsional stiffnesses. The convergence

characteristics in various locking regimes are studied for different models and their performances are

discussed in detail.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The design of general curved beams entails analysing a complex
structural behaviour, unlike straight ones. The deformations of a
curved beam are coupled due to active interactions among mem-
brane, shear, flexure and torsion strain fields. In the displacement
based finite element model, the use of low-order (especially, linear)
polynomial interpolation for the displacement field variables parti-
cipating in the strain definitions cause the element to ‘lock’ severely,
affecting the convergence to the true solution.

In linear straight Timoshenko beam finite elements, only shear
locking phenomenon is present. However, in curved Timoshenko
beam finite elements, apart from shear locking, membrane lock-
ing also exists. Both shear and membrane locking in beam finite
elements have been attributed to their inability to reproduce the
‘shearless bending’ and ‘inextensible bending’, respectively, in
thin beams [1–3]. Several researchers have studied the locking

associated with in-plane deformation of curved beams and
proposed methods to eliminate the ill effects of shear and
membrane locking [4–21]. These methods include reduced or
selective integration [3,5], use of higher order interpolations
[6–10], field consistency approach [11–14], formulations based
on mixed/hybrid methods [15,16], penalty relaxation techniques
[17], coupled displacement fields [18,19], and formulations based
on assumed strains [20,21].

The literature on locking phenomena related to out-of-plane
behaviour of curved beam elements is limited. Sabir [22] pre-
sented stiffness matrices for general deformation of Euler curved
beam element using independent strain functions. Choi and Lim
[23] developed linear and quadratic shear flexible curved beam
elements. As the formulations are based on assumed strain fields
they exhibited no locking effects. Prathap et al. [24] studied the
consistency requirements of out-of-plane transverse shear strain
field for a quadratic beam element based on Cartesian stain
definitions. Using numerical studies they showed that full inte-
gration of this element does not suffer from locking. The literature
review indicates that a detailed study on possible locking
mechanisms in displacement based linear curved beam element
has not been carried out for out-of-plane behaviour.
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In this article, we examine locking phenomena associated with
out-of-plane deformation of a linear Timoshenko curved beam
element. Presence of curvature related spurious mechanisms
which depend on the flexure-to-torsion stiffness ratio are
observed. The locking regimes based on the relative magnitudes
of flexure and torsion stiffness are identified using appropriate
numerical examples. Performance of different field consistent
finite element models is also evaluated.

The remainder of this article is organized as follows: Section 2
introduces the geometry, coordinate systems and the basic
equations associated with out-of-plane deformations for a linear
Timoshenko curved beam element. Field consistency aspects are
discussed in Section 3. Different field-consistent and field-incon-
sistent finite element models used in this study and their
implementation are discussed in Section 4. In Section 5, numer-
ical studies are presented to establish the presence of curvature-
related locking phenomena. Based on the difference observed in
the convergence characteristics of straight and curved beams of
equal length, curvature related spurious stiffening effects are
identified. Dependency of this additional stiffening on the flex-
ure-to-torsion stiffness ratio is studied, based on which existence
of two new locking phenomena is demonstrated for the first
time. The effectiveness of consistent strain field interpolation in
eliminating these locking effects and improving the convergence
behaviour of the linear Timoshenko curved beam element
is studied in detail. The distribution of stress resultants in
the flexure and torsion locking regimes are presented for field
consistent and field inconsistent models. Several conclusions are
presented in Section 6.

2. Finite element formulation

The geometry of a linear curved beam element of length 2L and
radius of curvature R is shown in Fig. 1. A right-handed orthogonal
curvilinear coordinate system s–y–z is used with its origin placed at
the centre of the element. The normalized coordinate x runs along
the circumferential direction such that x¼s/L.

The out-of-plane shear, flexure, and torsion strain components
in the curvilinear coordinate system are:

g¼ v0�yz ð1Þ

k¼�y0zþ
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t¼ y0sþ
yz

R
ð3Þ

In the above equations, v is the transverse displacement, yz is
the flexure rotation, and ys is the torsion rotation of the cross-
section. The prime (0) on a variable indicates its derivative with
respect to the circumferential coordinate s.

The total potential energy functional Pe of the beam element
can be written as
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The terms in the square bracket represent the strain energy
due to bending, transverse shear deformation, and torsion,
respectively; q, m, and t are the distributed transverse load,
bending moment, and torque along the span of the beam
element; ~Q

e

i and De
i are the generalized element forces and

displacements; E and G denote Young’s modulus and shear
modulus, respectively, ks is the shear correction factor; and R is
the radius of curvature of the beam element. The geometric
parameters A, I, and J denote the area, moment of inertia, and
torsional constant for the cross-section, respectively.

The weak forms of the governing equations are obtained by
applying principle of minimum total potential energy, dPe¼0 [25]:
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Eqs. (5.1)–(5.2) are the weak statements for Timoshenko
curved beam element under out-of-plane deformation. ~Q , ~M ,
and ~T denote internal generalized shear force, bending moment,
and torque, respectively. The functions w, c, j denote the
variations of out-of-plane transverse deflection v, flexure rotation
yz, and torsion rotation ys, respectively.

Next, we perform integration by parts on Eqs. (5.1)–(5.3) to
obtain the governing equations and associated natural boundary
conditions:
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Using Eqs. (6.1)–(6.3), the governing equations for out-of-
plane deformation of a Timoshenko curved beam element in
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Fig. 1. Coordinate system for the linear curved beam element: (a) geometry and

(b) arbitrary cross section.
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