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Abstract

This paper suggests a variation of a well-known probabilistic matrix factorization algorithm which is commonly used in data analysis and
scientific computing, and which has been considered recently to serve natural language processing. The proposed variation is meant to take benefit
from the fact that matrices processed in natural language processing tasks are normally sparse rectangular matrices with one dimension much
larger than the other, and this can be used to ensure adequate accuracy with acceptable computation time. Preliminary experiments on real-world
textual corpora show that the proposed algorithm achieves relevant improvements compared to the original one.
c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The representation of words and documents as dense vectors
is a fundamental step for several NLP (Natural Language
Processing) tasks including information retrieval, word sense
disambiguation, and text similarity. The literature proposes
two types of methods to compute representations of words
and documents [1]: global matrix factorization methods, and
local context window methods. However, as discussed in [2],
the distinction between such types of methods is becoming
blurry since the well known method skip gram with negative
sampling [3] implicitly factorizes a word-context matrix.

Among the global matrix factorization methods, a classic
method to build dense representations of documents and words
is LSA (Latent Semantic Analysis) [4]. Briefly, LSA processes
a given corpus of textual documents by first extracting a
normalized vocabulary of terms. Then, it builds a TDM (Term-
Document Matrix) [5] whose element in position (i, j) is the
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number of occurrences of term i in document j . Finally, LSA
decomposes the produced TDM by means of SVD (Singular
Value Decomposition) [6] to reduce the size of the matrices
that need to be processed with no loss of relevant information.
Given that TDMs for real world corpora can have thousands
of rows, truncated SVD [6] is often used to further reduce the
size of matrices. Given a TDM W , its truncated SVD with rank
k ≤ rank (W ) is built using three matrices Uk , Σk and Vk such
that

W = UkΣk V T
k , (1)

where only the largest k singular values of W are considered
to form the diagonal matrix Σk , and the corresponding left
and right singular vectors to form the unitary matrices Uk and
Vk . The representation of W in terms of Σk for a given k is
used to obtain representations of words and documents as dense
k-dimensional vectors. The choice of k influences the accuracy
of the approximation of the TDM W in terms of the correspond-
ing Σk .

The application of SVD to real world problems, which
require the processing of huge corpora with a good approxima-
tion, normally requires prohibitive computation time even when
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large computing infrastructures are used. The literature pro-
poses a number of algorithms to address this problem, among
which probabilistic methods are currently preferred because
they can take benefit from the features of modern computing
infrastructures. This paper proposes a probabilistic algorithm to
process real world TDMs with sufficient accuracy in a reason-
able computation time called MQRR (Mixed QR Randomized
subspace iteration with direct SVD). Such an algorithm uses
the fact that TDMs are commonly sparse rectangular to reduce
needed computation time with minor or no loss of accuracy. The
proposed algorithm is a variant of the well known RSIDSVD
(Randomized Subspace Iteration with Direct SVD) [7], and a
comparison with the performance of the original algorithm is
shown in Section 3. In detail, the preliminary experimental
results discussed in Section 3 show that MQRR achieves better
accuracy at a lower computation time than RSIDSVD.

This paper is organized as follows. Section 2 presents the
proposed MQRR algorithm focusing on the problem of com-
puting low-rank decompositions of sparse rectangular matrices.
Section 3 shows a preliminary assessment of the performance
of the proposed algorithm. Finally, Section 4 concludes the
paper and outlines planned future developments of this line of
research.

2. The proposed algorithm

Probabilistic algorithms are commonly used for low-rank
matrix approximation of large matrices. A detailed overview of
state of the art probabilistic algorithms to construct approximate
matrix decompositions is presented in [7]. Briefly, given a m×n
matrix A for which a low-rank approximation is required, the
basic idea of probabilistic low-rank approximation algorithms
is to perform the following two steps [7]:

1. Compute an orthonormal matrix Q whose range approx-
imates the range of A; and

2. Compute an approximate SVD factorization of A starting
from B = QT A.

In detail, the first step is performed by factorizing matrix AΩ
using QR decomposition [6], where Ω is a suitable n×l random
matrix with Gaussian distribution, and l is chosen according to
accepted approximation accuracy and computation time. The
second step is performed by first factorizing B as ŨΣV T ,
and then computing the requested approximated SVD of A as
UΣV T where U = QŨ .

The outlined scheme for probabilistic low-rank approxi-
mation can be improved for matrices whose singular values
decay slowly, as assumed in the mentioned RSIDSVD. The idea
of this technique is to apply randomized sampling to matrix
Ã, defined in Proposition 1, for a small integer q , since the
following proposition holds [7]:

Proposition 1. Given a m × n real matrix A and defined
Ã :=

(
AAT

)q A, Ã has the same singular vectors of A and
the following condition holds:

∀ j ∈ [1..rank (A)] σ j

(
Ã
)
= σ j (A)2q+1 (2)

Algorithm 1 The pseudo-code of the proposed algorithm
MQRR to perform an approximate SVD of an input matrix A.

1: function MQRR(A, l)
2: input A : m × n real matrix
3: input l : integer
4: output (U,Σ , V ): U, V unitary, Σ diagonal
5: Ω ∈ N n×l

6: Y0 ← AΩ
7: Q0 R0 = QRe(Y0)
8: for j ← 1 to q do
9: Ỹ j ← AT Q j−1

10: Q̃ j R̃ j = QR(Ỹ j )
11: Y j ← AQ̃ j

12: Q j R j = QRe(Y j )
13: end for
14: Q ← Q j

15: B ← QT A
16: ŨΣV T

= SVDe(B)
17: U ← QŨ
18: return (U,Σ , V )

19: end function

where [a..b] denotes the set of integers between a and b, range
boundaries included, and σ j (·) denotes the j th singular value
of a matrix, counted in descending order.

Note that [8] documents that in many cases a value of
q = 1 or q = 2 is sufficient. Finally, note that randomized
sampling applied to matrix Ã is subject to rounding errors
when executed using floating-point arithmetic, so it is necessary
to orthonormalize the columns of the sample matrix after the
applications of A and AT .

The proposed algorithm focuses on improving the accuracy
of RSIDSVD when dealing with sparse rectangular matrices.
The pseudocode of the algorithm is shown in Algorithm 1,
and it follows the general scheme of RSIDSVD outlined previ-
ously. The description of the algorithm assumes the following
conventions. First, N n×l is used to denote the space of n × l
random matrices with standard Gaussian distribution. Then,
SVDe(X ) is used to denote the truncated SVD of matrix X at
rank(X ), which from now on will be referred to as economy-
size SVD. Finally, QRe(Y ) is used to denote the economy-size
QR factorization of the m × n matrix Y with m > n, which is a
QR decomposition of Y that uses only the first n columns of Q
and the first n rows of R.

Note that the proposed algorithm uses a full QR factorization
only at line 10, while the economy-size QR factorization is used
at lines 7 and 12. The importance of the full QR factorization at
line 10 is motivated by the following result from [6], and by the
values of the singular values of common TDMs, as exemplified
in next section.

Proposition 2. Given a generic m× n matrix W , the following
condition holds for any k ≤ rank(W ):

min
W ′∈Mk

∥W −W ′∥ = σk+1(W ) (3)
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