
Contents lists available at ScienceDirect

International Journal of Medical Informatics

journal homepage: www.elsevier.com/locate/ijmedinf

A new computationally efficient algorithm for record linkage with field
dependency and missing data imputation

John Fergusona,⁎, Ailish Hanniganb, Austin Stackb,c

a Clinical Research Facility, National University of Ireland, Galway, Ireland
bGraduate Entry Medical School, University of Limerick, Ireland
cHealth Research Institute, University of Limerick, Ireland

A R T I C L E I N F O

Keywords:
Record linkage
Fellegi/Sunter
Conditional independence
EM-algorithm
Log-linear models

A B S T R A C T

Record linkage algorithms aim to identify pairs of records that correspond to the same individual from two or
more datasets. In general, fields that are common to both datasets are compared to determine which record-pairs
to link. The classic model for probabilistic linkage was proposed by Fellegi and Sunter and assumes that individual
fields common to both datasets are completely observed, and that the field agreement indicators are con-
ditionally independent within the subsets of record pairs corresponding to the same and differing individuals.
Herein, we propose a novel record linkage algorithm that is independent of these two baseline assumptions. We
demonstrate improved performance of the algorithm in the presence of missing data and correlation patterns
between the agreement indicators. The algorithm is computationally efficient and can be used to link large
databases consisting of millions of record pairs. An R-package, corlink, has been developed to implement the
new algorithm and can be downloaded from the CRAN repository.

1. Introduction

Record linkage is a term used to describe techniques to link two or
more datasets, or sometimes to remove duplicate records from a single
database, in situations where there is absence of a single unique iden-
tifier [1]. These techniques are of particular interest in health research,
where often several related databases need to be linked together to
facilitate the conduct of epidemiological studies in population health
[2], but are also useful in many other fields including fraud-detection
[3], linking various socioeconomic databases collected via census [4]
and national security [5]. The applications and utility of record linkage
is likely to increase in the future giving the rising interest in exploiting
secondary data sources for research, both in health research as well as
other fields. For example, a vast volume of data is currently collected
through reward cards, smart devices (such as phones, watches and
health censors), and website traffic. In general, linking two databases is
only possible if they share a number of common fields (quasi-identi-
fiers) that have some discriminative power in identifying unique
members of the population in question. In population health research,
the fields usually include demographic identifiers such as name, ad-
dress, age, sex and race.

Record linkage methods can be broadly split into deterministic and
probabilistic techniques. Deterministic methods (see [6] for example)

determine that two records are a match, when a combination of pre-
specified fields show a high level of agreement. For instance, a simple
deterministic matching strategy might be to decide a pair of records
represents a match only if they agree exactly on forename, surname and
date of birth. Probabilistic matching is a more sophisticated approach
where separate probability models for the agreement patterns of fields
for a given record pair are posited, both in the case that the record pair
truly constitutes a match, and in the case that the record pair con-
stitutes a mismatch. In general, probabilistic matching gives more re-
liable and accurate results compared with deterministic matching [7].
Fellegi and Sunter [8] developed the first widely utilized mathematical
model for probabilistic record linkage and their theoretical framework
and notation has heavily influenced this area of data science (see [9],
for example). The probabilistic approach facilitates the creation of a
matching score that can be assigned thresholds so that the record pairs
having scores above a specific threshold are considered matches. When
these procedures are viewed within a Bayesian framework, this score
can often be transformed into an estimated posterior probability that
the two records match [10].

At present, there are a wide range of probabilistic methods for re-
cord linkage, and the underlying probabilistic model usually is a simple
extension of the Fellegi and Sunter model, [8]. This assumes conditional
independence given match status in the agreement patterns of the two
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records across different fields. It has been observed, however, that this
assumption is often not true for example in databases containing names
and addresses, as strong dependencies have been observed between
agreements on fields such as surname, house number, street name, and
phone number [16]. When conditional independence is assumed in
these situations, the EM algorithm does not yield accurate estimates of
the parameters associated with the underlying probability distributions.
Moreover, if these parameters are used, then decision rules are sub-
optimal and error rates cannot be accurately determined [17]. Although
some extensions of the Fellegi and Sunter model have been suggested to
allow dependence ([11–14]), software is not widely available, and as a
result these methods may be difficult to implement for most users of
record linkage. Furthermore, missing data is also a challenge for record
linkage with record pairs that have missing data in any record linking
field often removed or ignored by commonly used linkage algorithms.
This may therefore result in valid matching record pairs being missed
[18].

Herein, we propose an innovative computationally efficient record
linkage procedure to incorporate field dependency into estimated pos-
terior probabilities based on an EM algorithm. We apply the procedure
to real and simulated data and compare this approach to the basic
model of [8], both in the presence of absence of conditional in-
dependence. Comparisons are made regarding classification perfor-
mance (using receiving operating characteristic curves) as well as ca-
libration accuracy of estimated posterior probabilities generated from
the algorithm. We also propose a flexible data-imputation algorithm as
a solution to missing fields in particular records, which is designed to be
run as a pre-processing step before the main algorithm. Together, these
new developments represent a complete algorithm for record linkage
which can be implemented using a new R package corlink.

The rest of this paper proceeds as follows. In Methods and Materials,
we introduce notation and describe the models and methods used for
our algorithms. In Results, we demonstrate the application of these
methods to the linkage of hospital laboratory and mortality data based
on a number of noisy demographic identifiers. The potential improve-
ment possible from correctly modelling the correlations between the
different identifiers is demonstrated with simulations. In the final sec-
tion, we summarize the novel aspects of our approach, discuss related
approaches and suggest some possible improvements to the algorithm
for future investigation.

2. Material and methods

2.1. Notation

For consistency, we use some of the notation from [9]. Solving a
matching problem requires us to find the subset of members of some set
A that represent the same individual as a member, b, of another set B.
The sets A and B usually represent different databases that need to be
linked – the members of each set representing records in the database.
More formally, one can represent the Cartesian product as a partition

× = ∪A B M U , with M representing the record pairs, one from A
and one from B, that constitute the same individual and U, the record
pairs that do not. A number of ‘fields’: 1,…,K, are available to help
match records in A and B. We assume these fields, which may represent
identifiers such as name, address, date of birth, are present in both the
databases. For a particular record pair, j, where ∈ … ×A Bj {1, ., }, we
write =γ 1j

k if field k, ( ∈ …i K{1, , }) agrees for the two records con-
stituting pair j, and 0 if the information in the field doesn’t agree. For
example, if field 1 represents an individual’s forename, we would write

=γ 1j
1 if the recorded forenames for record pair j are identical.

Algorithm A: Missing Data Algorithm
Due to incomplete data entry or patient non-report, not all identi-

fiers may be available for a particular record. Our first step is a type of
data-imputation for record pairs where at least one of the K fields are

missing. Consider the vector … ∈Z Z( , ., )j j
K1 {0,1,2}K , with =Z 2j

k re-
presenting missingness of field k (k≤ K) in at least one of the records
from record pair j; =Z 1j

k indicating that field k is observed and in
agreement for both records in record pair j; and 0 representing field k
being observed in both records in record pair j but having different
values. Note that we could extend the definition of Zj

k by creating va-
lues of Zj

k to represent missing in database A, but observed in database
B, or missing in database B but observed in database A, or missing in
both databases. In practice however, a reduced state space having 3K,
rather than 5K, combinations will be more computationally efficient
when K is large. In addition, the event that a field is missing on both
records is likely to be rare, so potentially not much information is lost.
Probabilities of missingness for identifiers used in the linkage of real
data are given in the Results Section.

Denote ∑=
⎧
⎨
⎩

… = …
⎫
⎬
⎭

…
=

∪

M I Z Z z z( , ., ) ( , )
M U

z z
j

j j
K

K,
1

1
1K1 for each possible

pattern … ∈z z( , , ) {0,1,2}K
K

1 , I A( ) being the indicator function of the
event A. The vector … ∈…M for z z{ } ( , , ) {0,1,2}z z K

K
, 1K1 represents how

many times each possible …z z( , , )K1 pattern was observed in the data,
and can be considered the raw data for our linkage algorithm. In the
presence of missing data, the agreement pattern … ∈i i( , , ) {0,1}K

K
1 that

would have been observed if there was no missing data for the record
can be considered a latent variable. Given this, denote

∑=
⎧
⎨
⎩

… = …
⎫
⎬
⎭

…
=

∪

N I γ γ i i( , ., ) ( , )
M U

i i
j

j j
K

K, ,
1

1
1K1 for each possible pattern

… ∈i i( , , ) {0,1}K
K

1 . Note that the vector of counts …N{ }i i, , K1 represents the
frequencies of each agreement pattern that would be observed if no
records had missing identifiers. Note that …Mz z, K1 is observed, whereas

…Ni i, , K1 is, in general, latent or unobserved (unless of course no records
have missing data). Let …pi iK1 denote the probability of the pattern i1 …
iK under the assumption of no missing data. The first objective is to
predict …Ni i, , K1 or equivalently to estimate …pi iK1 , based on the ob-
served …Mz z, K1 . One can estimate …pi iK1 using the EM algorithm [19], at
each step iterating between calculating the expected value,

… …E N p( )i i i i
old

, , K K1 1
, of …Ni i, , K1 given the current estimates of …pi i

old
K1
(that is

the E-step) and choosing …pi iK1
to maximize the expectation of the

complete loglikelihood for a saturated log-linear model (that is the M-
step):

∑=
… ∈

… … …pl E N p p( ) ( )log( )
i i

i i i i
old

i i
{( ) {0,1} }

, ,
K K

K K K
1

1 1 1

To facilitate the flow of material, we omit the details of the EM
algorithm here, and refer the reader to the Supplementary Material for
a detailed description of the E-step and M step.

The estimated proportions …p̂i iK1 and associated predicted counts

…N̂i iK1 , from the final step of the EM algorithm are the input for the main
linkage algorithm to be described next. For simplicity, we remove the
hat symbols when referring to …N̂i iK1 and …p̂i iK1 in the following, even
though they may be estimated through this initial EM algorithm.

Algorithm B Linkage Algorithm
The goal of probabilistic linkage is to generate posterior prob-

abilities that a record pair constitutes a true match given a particular
agreement pattern: … ∈i i( , , ) {0,1}K

K
1 . Different probabilistic linkage

algorithms vary regarding how these models are specified. With this in
mind, we denote:

= ∪M M Uπ /M as the proportion of record pairs that refer to the
same individual (1)

πU = 1− πM as the proportion of record pairs that refer to different
individuals.

Suppose, we posit separate probability models for ⎜ ⎟
⎛
⎝

… ⎞
⎠

γ γ, .,j j
K1 when

j ∈M and when j ∈ U:
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