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A B S T R A C T

The volume of biomedical data available to the machine learning community grows very rapidly. A rational
question is how informative these data really are or how discriminant the features describing the data instances
are. Several biomedical datasets suffer from lack of variance in the instance representation, or even worse,
contain instances with identical features and different class labels. Indisputably, this directly affects the per-
formance of machine learning algorithms, as well as the ability to interpret their results. In this article, we
emphasize on the aforementioned problem and propose a target-informed feature induction method based on
tree ensemble learning. The method brings more variance into the data representation, thereby potentially
increasing predictive performance of a learner applied to the induced features. The contribution of this article is
twofold. Firstly, a problem affecting the quality of biomedical data is highlighted, and secondly, a method to
handle that problem is proposed. The efficiency of the presented approach is validated on multi-target prediction
tasks. The obtained results indicate that the proposed approach is able to boost the discrimination between the
data instances and increase the predictive performance.

1. Introduction

Significant progress has been made in biomedical data generation
techniques and feature extraction methods. Microarrays, high-
throughput sequencing, mass spectrometry and many others have been
recognized as tools of great importance. The scientific community ex-
ploits these technological advances to generate more data in the field of
biomedicine. However, a thoughtful question would be how in-
formative these data truly are to make predictive inferences.

More precisely, among all the scientific tools in biomedical infor-
matics, machine learning has proved to be of paramount importance,
especially in predictive problems. It has provided contributions in a
wide range of problems in biology and biomedicine [1,2]. Protein
function prediction, interaction prediction between drugs and proteins,
knowledge discovery related to biomarkers are only some of the various
examples. In particular, in the framework of supervised learning several
methods are provided to learn predictive models only from former
observations of a system. In supervised learning, the instances are de-
scribed by features (characteristics of each instance) and accompanied
by targets. The goal is to learn a model on a training set of instances
that can predict the target given the features [3]. This model is then
used to predict the target of new unseen instances. If the target is nu-
meric, the task is called regression. If the target is categorical (i.e., a
class has to be predicted), the term classification is used. In some

prediction problems, rather than a single target, a set of targets needs to
be predicted. The mentioned applications of gene function prediction or
interaction prediction are instances of this so-called multi-target pre-
diction task [4]. Multi-target prediction is a generalization of multi-
target regression and multi-target classification. Multi-label classifica-
tion can be considered as an instance of multi-target classification with
only two nominal values for each target [5,6]. These applications can
be tackled by either transforming the multi-target problem into a set of
single-target problems and applying a standard prediction algorithm, or
by applying a specific multi-target prediction algorithm.

One of the most popular machine learning algorithms are the de-
cision tree induction algorithms [7]. They have been applied ex-
tensively in biological and biomedical systems [2,8]. Decision tree al-
gorithms have many advantages over other machine learning methods.
They provide interpretability of the induced models, providing trans-
parency and insights to scientists, leveraging this way knowledge dis-
covery. Their models are also scalable, computationally efficient and
accurate. The predictive performance of decision trees is specifically
boosted when they are combined with ensemble methods [9], providing
state-of-the-art results. Decision tree learning and its ensemble exten-
sion have been extended to the multi-target prediction setting (i.e.,
multi-label classification and multi-target regression) [4]. Multi-label
classification has received more attention than multi-target regression
[10].
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1.1. Problem statement

In biomedicine and healthcare representing the data effectively is
often a challenging task. In comparison to other fields, such as multi-
media analysis or web mining, getting new features for an instance is a
substantially more difficult task in biomedicine. In the case of a song or
an image being under-represented one can easily get (extract) more
features by collecting more information about the artist or applying an
audio or image processing technique to the instance itself. However,
this is not always possible in biomedicine. It requires significant time,
expenditure, and the presence of human experts, as the features most of
the times are the outcome of laboratory work. Furthermore, in medicine
the data are usually produced through the process of patient care and
thereby issues of privacy are included [1]. In many countries, hospitals
are equipped with inefficient database systems that are mainly designed
for billing purposes. In addition, medical data inevitably contain many
missing values and many non-numeric features. Many traditional ma-
chine learning methods (e.g., SVM [11]) cannot be applied on such data
without preprocessing. These peculiarities of the data in healthcare and
biomedicine often lead to non-variant data representations and in-
evitably the harassment of the performance of machine learning
methods [12]. To this end, methodologies to handle this uniqueness of
biomedical data are needed.

It is crucial for the performance of machine learning models that the
features that describe the data instances are enriched with valuable
information and are able to discriminate the data instances. However,
there are many examples of broadly used benchmark biomedical da-
tasets suffering from this phenomenon of lacking variance. An extreme
version of the aforementioned phenomenon is the existence of biome-
dical datasets that contain identical feature vectors for different data
instances. Some examples from the field of gene function prediction
(e.g., [13,14]) or interaction prediction (e.g., [15]) are shown in
Table 1 [16,17]. This is irrational as there are instances (e.g., genes),
that have different targets (e.g., functions) but identical feature vectors.

In the pheno dataset for example, 32% of the instances have a unique
feature vector. As a unique feature vector we denote a feature vector
that exists only once in the dataset after removing the replicates (i.e.,
instances that are described by exactly the same feature vectors). This
dataset contains an instance for every gene in the S. cerevisiae organism,
and the instance corresponds to a mutant, i.e. an organism where the
corresponding gene has been altered. There are 69 features corre-
sponding to different growth medium (e.g., caffeine, sorbitol, benomyl,
…), on which growth of the mutant is recorded. The values of the
features correspond to the observed sensitivity or resistance of the
mutant: no effect, less growth or better growth compared to the wild
type, or no data for the growth medium. The large number of replicates
(i.e., instances that are described by exactly the same feature vectors)
can be explained by two observations: (1) the data is very sparse, i.e. for
many mutants few growth media have been tested, and (2) in many
cases the tested growth media has no effect on the mutant. The church
dataset also contains many instances with identical feature values. It

consists of 27 mostly real-valued features. Interestingly, the replicate
issue is not limited to datasets with few features. For example, hom
contains homology information encoded by 47034 binary features, struc
contains 19628 binary features related to predicted secondary structure
of the protein. Moreover, apart from genes the aforementioned problem
is also existing in interaction networks. In Table 1, an example of a
drug-protein interaction network (DPI) [18] is presented where there
are some drugs or proteins having the same feature vector. In drug-
protein interaction networks connections are formed between drugs
and proteins when the drug targets the protein. Both interaction parts
are described by their own set of features, for example in the current
dataset each drug is described by the presence or absence of 660 che-
mical substances and each protein by the presence or absence of 876
PFAM domains.

Lack of variance in the data representation can heavily impair the
performance of machine learning algorithms. Indicatively, by applying
an 1 nearest neighbor (1-NN) classifier to a training dataset (including
the specific query instance), one expects to get 100% accuracy.
However, in case there are instances in that dataset with exactly the
same feature representation, it is not guaranteed that an instance is
mapped onto itself. As an example we could refer to [16] where ML-
KNN [19] with =K 1 was applied on pheno dataset from Table 1 and it
yielded a precision of only 51.59%. Moreover, instances with identical
feature vectors will end up into the same leaf in case of decision trees or
their ensemble extension. Although this is what is expected, it causes a
performance issue if those instances (i.e., instances in the same leaf)
have completely different labels. The algorithm is supposed to separate
instances with very different labels into different leaves. In Fig. 1, the
distances between the feature vectors representing the 1592 data in-
stances of pheno and the distances between the corresponding label
vectors are displayed. More specifically, distances were computed be-
tween the feature vectors and between the label vectors. Each cell (i j, )
of the matrix was assigned a color based on the distance between the
feature (label) vectors that correspond to instances i and j. White cor-
responds to distance equal to zero and black to distance equal to one. It
is shown that instances represented by identical feature vectors (dis-
tance equal to zero) are associated with different labels.

The issue of replicate feature vectors is an extreme example of the
more general phenomenon of lacking variance in biomedical data.
Although it is difficult to provide any algorithmic solution to the ex-
istence of replicate feature vectors, the scientific community should be
aware of its presence.

1.2. Related work

Whereas numerous studies have focused on feature selection
[20–22], the more difficult task of feature construction or induction has
received less attention. The main goal of feature construction is to
augment the feature space by creating or inferring additional features
[23].

In [24], a feature construction method specifically focused on multi-
label classification was presented. A distinct feature set was assigned to
every label, increasing this way the performance of a classifier trained
for that specific label. The label-specific features were generated by first
clustering the positive and negative instances (separately) of the label.
Next, the distances of each instance to the obtained cluster centroids
were calculated. Vens and Costa [25] proposed a feature induction
technique based on random forest [9]. A metric transformation was
proposed, mapping the identity of the tests performed in each node of a
decision tree to a feature indicator. Next, the final representation is
yielded by concatenating the features associated with the trees in the
forest and encoding them with hashing. The method was demonstrated
on binary and multi-label classification tasks. A similar work involving
a set of random clustering forests was proposed in [26,27]. The appli-
cation was focused on the construction of visual vocabularies. More
specifically, randomized trees were used to generate the new feature

Table 1
Datasets, the number of features, instances and unique feature vectors.

Context Dataset |features| |instances| |unique feature vectors|

Gene fct. prediction church 27 3755 2352
(S. cerevisiae) pheno 69 1592 514

hom 47034 3854 3646
seq 478 3919 3913
struc 19628 3838 3785

(A. thaliana) scop 2003 9843 9415
struc 19628 11763 11689

Interaction prediction drugs 660 1862 1779
(DPI network) proteins 876 1554 683
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