
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Trie-based rule processing for clinical NLP: A use-case study of n-trie, making
the ConText algorithm more efficient and scalable

Jianlin Shi⁎, John F. Hurdle
Department of in Biomedical Informatics, University of Utah, Salt Lake City, UT, USA

A R T I C L E I N F O

Keywords:
Natural language processing
Medical informatics applications
Algorithms
Data accuracy

A B S T R A C T

Objective: To develop and evaluate an efficient Trie structure for large-scale, rule-based clinical natural language
processing (NLP), which we call n-trie.
Background: Despite the popularity of machine learning techniques in natural language processing, rule-based
systems boast important advantages: distinctive transparency, ease of incorporating external knowledge, and
less demanding annotation requirements. However, processing efficiency remains a major obstacle for adopting
standard rule-base NLP solutions in big data analyses.
Methods: We developed n-trie to specifically address the token-based nature of context detection, an important
facet of clinical NLP that is known to slow down NLP pipelines. N-trie, a new rule processing engine using a
revised Trie structure, allows fast execution of lexicon-based NLP rules. To determine its applicability and
evaluate its performance, we applied the n-trie engine in an implementation (called FastContext) of the ConText
algorithm and compared its processing speed and accuracy with JavaConText and GeneralConText, two widely
used Java ConText implementations, as well as with a standalone machine learning NegEx implementation,
NegScope.
Results: The n-trie engine ran two orders of magnitude faster and was far less sensitive to rule set size than the
comparison implementations, and it proved faster than the best machine learning negation detector.
Additionally, the engine consistently gained accuracy improvement as the rule set increased (the desired out-
come of adding new rules), while the other implementations did not.
Conclusions: The n-trie engine is an efficient, scalable engine to support NLP rule processing and shows the
potential for application in other NLP tasks beyond context detection.

1. Introduction1

Algorithmic processing efficiency becomes increasingly important
as the size of clinical datasets grows, especially in the era of “Big Data”
[1]. In the specific domain of clinical natural language processing
(NLP), even small increases in processing throughput are important
when handling very large note corpora. An extreme example is the U.S.
Veterans Administration VINCI national data warehouse, which con-
tains> 2 billion clinical notes. Divita et al. demonstrated the effect of
note processing efficiency in VINCI studies [2]. In their work, 6 million
records is considered a representative national sample for many ap-
plications. Shaving off 100ms of processing time per note in their
benchmark system (401ms was their nominal per-note-processing
time) would save nearly a week of clock time for a corpus of that size.

With the growing interest in Data Science and Big Data, information
extraction and retrieval will continue to be a trend in clinical research
and practice [3]. Warehoused clinical data growth, spurred in the U.S.
by the HITECH Act [4], has escalated the need for faster and more
accurate information processing. To improve clinical NLP processing
efficiency, we investigated the bottlenecks in typical processing pipe-
lines. Context detection, a rule-based NLP component (defined below),
consumed ∼70% of processing time in Divita’s report.

In this paper, we show that Trie-based rule processing performs well
in an important area of clinical NLP. We also present the n-trie (as in
“trie for NLP”) engine, an optimized Trie rule-processing engine for NLP
and demonstrate its efficacy and processing performance with context
detection as the use case, specifically the ConText algorithm [5]. Fi-
nally, we discuss the engine’s potential in other clinical NLP use cases.

https://doi.org/10.1016/j.jbi.2018.08.002
Received 7 March 2018; Received in revised form 19 July 2018; Accepted 5 August 2018

⁎ Corresponding author at: Department of in Biomedical Informatics, University of Utah, 421 Wakara Way, Suite 140, Salt Lake City, UT 84108, USA.
E-mail addresses: jianlin.shi@utah.edu (J. Shi), john.hurdle@utah.edu (J.F. Hurdle).

1 Abbreviations used in this article: “F1-score” is the harmonic mean of precision and recall and is defined in section 3.2.3; “NLP” is “Natural Language Processing;
“IE” is “information extraction”.

Journal of Biomedical Informatics 85 (2018) 106–113

Available online 06 August 2018
1532-0464/ © 2018 Published by Elsevier Inc.

T

http://www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2018.08.002
https://doi.org/10.1016/j.jbi.2018.08.002
mailto:jianlin.shi@utah.edu
mailto:john.hurdle@utah.edu
https://doi.org/10.1016/j.jbi.2018.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2018.08.002&domain=pdf


2. Background

2.1. Rule-based systems are not dead

Traditionally there are three approaches to information extraction
(IE) from clinical text: rule-based, machine learning-based, or a hy-
brid of the two. Although machine learning exhibits promising per-
formance when provided with enough labeled data and a well-defined
target structure, its disadvantages in real-world applications are sig-
nificant: the inner workings of all but a few models are hard to extract
(especially true of the currently popular deep neural network
models), they are difficult to maintain (e.g., updating or adapting
them requires re-training), they are hard to debug (i.e., one can only
reduce errors by tuning parameters or by adopting heuristics), and
they are hard to enhance with new domain knowledge [6]. In many IE
tasks rule-based systems show comparable or superior extraction
performance compared to state-of-the-art machine learning solutions
[7–10]. Whether one approach or the other has an advantage re-
garding human labor cost is debatable. Rule-based approaches are
generally labor intensive when developing rules. On the other hand,
creating a labeled training set and choosing, in a principled and
disciplined way, a mathematical model optimized for a specific NLP
task requires significant effort and expertise with the machine
learning approach.

2.2. Previous research related to optimizing rule processing execution time

Most rule-based systems use regular expressions to define rules or
part of rules. In the rule execution experiment conducted by Reiss et al.
[11], regular expression execution time accounts for 90% of the overall
running time. Chiticariu et al. described SystemT, a rule processing
engine that utilizes a set of optimization strategies to speed up rule
execution [9]. The most effective strategy involves prioritizing
matching rare elements in rules to reduce the matching workload when
the rules contain the logical conjunction of multiple elements. How-
ever, this strategy only works when prior statistical knowledge about
the IE search space is available.

A related optimization that may potentially improve rule processing
time uses character trigram indices [12]. After building the character
trigram index, regular expressions can be converted to logic-joined
trigram search queries. In this way, rule matching speed can be im-
proved by reducing the search space through limiting regular expres-
sion execution within trigram-matched query results. In a sense, this
approach resembles a very shallow version of the hash tree algorithm
we adopted in the work described below. However, trigram indexing
requires extra space and substantial preprocessing.

The third related approach is to utilize specifically designed data
structures to optimize the string matching process. Since the funda-
mental goal of rule processing is matching the rules to target text
strings, any string matching algorithm potentially could be adopted. For
instance, the Trie structure has been studied to host rule dictionaries in
hopes of speeding up processing time. A variety of Tries have been
demonstrated to be highly effective at string searching, such as the
ternary Trie [13], the Patricia Tries [14], the Cache-Efficient Trie [15],
and the Hash Array Mapped Trie (HAMT) [16]. HAMP is the ancestor of
our n-trie (see Section 4.1), which has a speed-optimized design. It
consists of a root hash table with entries of key/value pairs or pointers
to sub-hash tables (see Fig. 1). Each sub-hash table has the same
structure as the root hash table.

These earlier Trie data structures, based as they are on character
strings, frequently prove less flexible and more inconvenient to use for
defining clinical NLP rules. Often an NLP rule needs a component that
can represent a specific token (e.g., “ruled out” or “denies”). It is dif-
ficult to build an efficient character-based Trie for large sets of such
rules.

2.3. Contextual information

The following subsections briefly review the background of context
detection – the use case to demonstrate the n-trie engine. One can think
of the term “contextual information” as a set of modifiers associated
with a specific mention of a concept. In the domain of clinical in-
formation extraction, contextual information typically includes three
types of modifiers: negation (whether the target concept exists, does not
exist, or is possible/uncertain), experiencer (whether the target concept
refers to the current patient or to someone else), and temporality
(whether the target concept is currently true, historically true, or hy-
pothetical) [7]. In some studies, the “certainty” (possible/uncertain) is
separated as an independent modifier [17,18].

Negation is the best-studied modifier and refers to an assertion
about what a patient does not have, such as medical conditions or
symptoms (e.g., “Patient denies exertional dyspnea”). Previous studies
discovered that clinical notes contain a significant number of negative
statements [19]. In the corpus used in this study, SemEval-2015 Task
14: Analysis of Clinical Text [20], more than one-fifth of the identified
disorder concepts were negated. These negations are often clinically
meaningful. They serve critical roles in supporting differential diagnosis
generation and treatment planning. For instance, in an ultrasound re-
port, the context of “No atrial septal defect was found” versus the
context of “Atrial septal defect is present” would lead to completely
different diagnostic and treatment strategies.

2.4. Context detectors

Several rule-based context detectors have been developed and
evaluated, such as NegExpander [21], NegFinder [19], and NegEx [22]
plus its descendent ConText [5,23]. Rule-based detectors typically de-
fine a set of regular expressions that look for trigger terms across a
given scope of tokens, usually augmented with additional regular ex-
pressions designed to suppress false positives (e.g., double negatives).
NegExpander identifies negation words and conjunctions, and asserts
the conjunctive noun phrases as negated. However, it cannot adjust the
negation scope based on relevant semantic clues, e.g., “although.”
NegFinder introduces “negation terminators” to overcome this limita-
tion. Notwithstanding, it cannot handle pseudo-negation words, such as
double negations. NegEx and ConText use “pseudo” triggers to deal
with these situations. Goryachev et al. [8] compared four different
negation detection methods to process discharge summaries, including
NegEx, NegExpander, and two other simple machine learning (ML)
approaches. The rule-based NegEx (F1-score: 0.89) and NegExpander
(F1-score: 0.91) outperformed the two ML approaches (F1-scores: 0.78
and 0.86, respectively). Several ML-based or hybrid systems have been
described [17,24–28]. Only NegScope [27], a negation detector eval-
uated on radiology reports and biomedical abstracts in the Bioscope
Corpus [18] and Cogley et al.’s system [28] (a temporality and ex-
periencer detector applied to 120 history and physical notes), out-
performed the rule-based systems (Cogley’s system only outperformed
ConText in temporality assertions). None of the reports noted above
provided any information on processing efficiency.

Although these reported results suggest that the context detection

Fig. 1. Hash Array Mapped Trie (HAMT) Structure [16].

J. Shi, J.F. Hurdle Journal of Biomedical Informatics 85 (2018) 106–113

107



Download	English	Version:

https://daneshyari.com/en/article/6927392

Download	Persian	Version:

https://daneshyari.com/article/6927392

Daneshyari.com

https://daneshyari.com/en/article/6927392
https://daneshyari.com/article/6927392
https://daneshyari.com/

