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ARTICLE INFO ABSTRACT

Objective: Evaluate potential for data mining auditing techniques to identify hidden concepts in diagnostic
knowledge bases (KB). Improving completeness enhances KB applications such as differential diagnosis and
patient case simulation.

Materials and methods: Authors used unsupervised (Pearson’s correlation — PC, Kendall’s correlation — KC, and a
heuristic algorithm - HA) methods to identify existing and discover new finding-finding interrelationships
(“properties”) in the INTERNIST-1/QMR KB. Authors estimated KB maintenance efficiency gains (effort re-
duction) of the approaches.

Results: The methods discovered new properties at 95% CI rates of [0.1%, 5.4%] (PC), [2.8%, 12.5%] (KC), and
[5.6%, 18.8%] (HA). Estimated manual effort reduction for HA-assisted determination of new properties was
approximately 50-fold.

Conclusion: Data mining can provide an efficient supplement to ensuring the completeness of finding-finding
interdependencies in diagnostic knowledge bases. Authors’ findings should be applicable to other diagnostic
systems that record finding frequencies within diseases (e.g., DXplain, ISABEL).
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1. Introduction

Data mining has gained popularity as a mechanism for discovery in
biomedical research [1-4]. In contrast to mining patient-related data,
construction and maintenance of knowledge bases (KBs) for diagnostic
decision support systems remains a predominantly manual and labor-
intensive process [5-7]. The authors explored the feasibility of using
algorithmic methods to derive novel information relevant to general-
purpose clinical diagnosis using an existing large diagnostic knowledge
base.

As physicians observe pathophysiological manifestations (findings)
of diseases in their patients, they require evidence-based disease-to-
finding linkages to generate and confirm diagnostic hypotheses [8-10].
Diagnostic KB curators attempt to capture such background information
to support clinicians’ practices. Physicians combine abductive rea-
soning, deductive reasoning, inductive reasoning, and probabilistic
reasoning with clinical knowledge to reach a diagnosis that best ex-
plains the patient’s findings [8-12]. When attempting to resolve a dif-
ferential diagnosis through questioning (including ordering laboratory
and imaging studies), the value of information gained from seeking
additional findings is not uniform [13,14]. Specifically, some findings
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are conditionally interdependent on other findings — a problem re-
cognized by developers of early Bayesian systems, and more recently
explored through Bayesian belief networks [15-18]. Learning that a
patient with an elevated serum total bilirubin level has jaundice is not
as informative as learning that the same patient’s reticulocyte count is
substantially elevated [19].

Knowing how each disease finding relates to other disease findings
has relevant applicability in clinical systems. As noted, Bayesian sys-
tems often require conditionally independent input findings. In helping
users to “work up” a case, diagnostic systems generate questions that
ideally should minimize overlap in information content with already
known findings [13-15]. Additionally, diagnostic patient case simula-
tions should avoid generating too many interdependent case findings
[20]. As new findings are added to a KB, the number of finding inter-
dependencies grows at least linearly and potentially combinator-
ially—complicating KB maintenance tasks.

JD Myers, HE Pople Jr., and RA Miller initially developed the
INTERNIST-1/QMR system at the University of Pittsburgh [21,22]. The
INTERNIST-1/QMR KB has been adapted to multiple representations,
including as a Bayesian Belief Network (QMR-DT) [17,18]. The latter
formulation of the INTERNIST-1/QMR KB made the assumption of
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conditional finding independence, which was common for diagnostic
systems at the time, but had significant performance costs [23]. After
more than a decade of recent dormancy, the authors and colleagues at
Vanderbilt are developing new mobile applications based on a revised
version of the INTERNIST-1/QMR KB. The KB contains evidence-based
descriptions of approximately 630 diseases using 4600 possible findings
[19]. The findings, connection weights (see below), and linked dis-
orders associated with a disease form the disease profile. In the INTE-
RNIST-1/QMR KB, attributes called “properties” describe unary and
binary  facts/relationships among findings—including inter-
dependencies among findings [24]. Previously, relating one finding to
another via properties required extensive clinical knowledge and time-
consuming review effort [5]. Over the three-decade course of the
INTERNIST-1/QMR project expert clinical diagnostician JD Myers
manually derived 5802 such properties from 10,586,901 possible
finding pairs [24]. Reliance on manual derivation presents a key chal-
lenge to the maintenance and expansion of diagnostic KB contents. The
authors’ new mobile applications require properties to function opti-
mally.

The authors recently observed that interdependencies between
finding pairs occur in two forms: etiological and pragmatic. Etiological
interdependencies reflect a common cause (elevated bilirubin — jaun-
dice) or alternatively a broader than-narrower than relationship (he-
patomegaly — moderate liver enlargement). Pragmatic relationships
represent common sense knowledge about mutually exclusive clinical
circumstances (males do not develop pregnancy-related findings or
diseases). By definition (i.e., due to a common cause), findings related
by etiological properties probabilistically co-occur within diseases more
often than by random chance; conversely, pragmatic properties identify
findings unlikely to co-occur in the same disorder. Table 1 provides
examples of INTERNIST-1/QMR properties and their purposes.

Not all etiologically interdependent findings merit representation as
properties. For example, patients experiencing hepatocellular injury
will typically have elevated serum aspartate aminotransferase (AST)
and alanine aminotransferase (ALT). Nevertheless, one would not want
to create a property that states if AST is elevated, so is ALT, because in
some instances — such as muscle injury — this does not occur. The au-
thors have used the term “facet” to describe sets of findings in a disease
that share a common etiology [25]. For example, in inflammatory ar-
thritis, the findings morning stiffness, severe joint pain, and decreased
joint range of motion all share a facet relationship with one another.
Facet relationships do not qualify as pairwise property relationships
(e.g., AST/ALT) [25]. Superimposing facets on the INTERNIST-1/QMR
disease profiles in the past-involved intense manual efforts [26]. Facets
are useful for patient case simulation and for causal deductive rea-
soning in diagnosis [25].

The current study used the disease profiles curated in the INTER-
NIST-1/QMR KB to determine the extent to which existing and new
properties could be discovered via mining techniques. Semi-automated
discovery of “missing” properties and derivation of new facet re-
lationships would both improve upon human imperfections during ar-
duous review of a large dataset. Each disease profile in the INTERN-
IST-1/QMR KB contains an average of 85 findings [24]. For each
disease-finding pair, the KB includes an estimated positive predictive
value (evoking strength) on a 0-5 scale and a literature-derived sensi-
tivity (frequency) of the finding in the disease (i.e., how often patients

Table 1
Property examples.
Index finding Relationship ~ Affected finding Type
Sputum production Implies Cough Etiological
History of prostatitis Rules out Sex female Pragmatic
Heart murmur systolic apical ~ Implies Heart murmur Etiological
present
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with the disease present with the finding, on a 1-5 scale) [19]. A sen-
sitivity of 1 means the finding is rarely seen with the disease; 3 means
the finding occurs in approximately half of all cases, and 5 means the
finding is present in essentially all cases [14].

2. Materials and methods

The authors hypothesized that two pathophysiologically inter-
related findings would likely co-occur together in parallel across mul-
tiple disease profiles in a diagnostic KB. Additionally, if the findings’ co-
occurrences were etiologically determined, their relative frequencies in
the diseases (as represented by sensitivity scores across the disease
profiles) would vary conjointly in parallel. Based on the foregoing hy-
potheses, the authors first developed a heuristic algorithm to discover
new properties by searching for finding pairs meeting the given criteria.
Authors then evaluated the heuristic algorithm against statistical dis-
covery methods to determine which approach might be superior.
Pragmatic properties (of form “A” contradicts “B” — e.g., females cannot
have a history of prostatitis) are not discoverable in this fashion, be-
cause contradictory findings rarely co-occur within disease profiles.
Correlating the presence of a specific finding with the absence of a
different specific finding across the 630 disease profiles would be dif-
ficult, given that, on average, only 85 of the 4601 potential findings
appear in a disease profile. The authors chose the INTERNIST-1/QMR
KB for this study because of its breadth. Other formulations of the KB,
such as QMR-DT, have fewer disease profiles and/or lacked the concept
of finding interdependencies. The authors considered a finding’s fre-
quency and evoking strength, whether on an ordinal or probability
scale, of less value for determining etiological relationships, than the
number of overlapping disease profiles. Furthermore, the authors be-
lieved the ordinal scale to be more robust, because an ordinal ranking is
less sensitive to the curator’s interpretations of probabilities in the lit-
erature.

The authors also investigated the use of a supervised machine
learning method for property auditing. The study employed Python’s
Scikit Learn random forest model trained on a labeled set of 56,000
(“property” or “no relationship”) pairwise finding combinations, to
discover new properties with the remaining 10,530,901possible finding
pairs [27]. Authors selected a random forest model, because those
models tend to be resistant to over fitting. Over fitting was a concern,
because the training set was significantly smaller than the search space
[28]. The model used the sum of disease frequencies between two
findings as its feature space. This meant the model had 630 numeric
features, ranging from 0 to 10 due to the summation. The authors chose
to combine frequency scores with a sum to preserve information of
disease finding frequency, as compared to a multiplicative effect. The
authors used frequency scores to parody the type of data used by un-
supervised methods. The authors explored several different ratios of
properties to non-properties in the training set; some training sets in-
volved an acceptable level of noisy negative labels [29].

2.1. Unsupervised knowledge auditing methods

The project analyzed all co-occurrences of 4601 findings across all
630 disease profiles, totaling 10,586,901 unique pairwise combina-
tions. This large search space imposed pragmatic computational con-
siderations, as the authors needed to evaluate 630 disease profiles for
each of the nearly 11 million finding combinations. The statistical and
heuristic methods designated a score of zero for finding pairs that co-
occurred in fewer than two disease profiles, and higher scores based on
how well a pair of findings tracked together across multiple disease
profiles. Findings that frequently co-occur in multiple disease profiles
together are more likely to share a common pathophysiologic cause,
and therefore merit a property relationship to prevent diagnostic sys-
tems from seeking redundant or uninformative findings [30]. Since
etiological dependencies between findings imply a common
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