
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Patient representation learning and interpretable evaluation using clinical
notes

Madhumita Sushila,b,⁎, Simon Šusterb, Kim Luyckxa, Walter Daelemansb

a Antwerp University Hospital, ICT Department, Wilrijkstraat 10, Edegem 2650, Belgium
b Computational Linguistics and Psycholinguistics (CLiPS) Research Center, University of Antwerp, Prinsstraat 13, Antwerp 2000, Belgium

A R T I C L E I N F O

Keywords:
Representation learning
Patient representations
Model interpretability
Natural language processing
Unsupervised learning

A B S T R A C T

We have three contributions in this work: 1. We explore the utility of a stacked denoising autoencoder and a
paragraph vector model to learn task-independent dense patient representations directly from clinical notes. To
analyze if these representations are transferable across tasks, we evaluate them in multiple supervised setups to
predict patient mortality, primary diagnostic and procedural category, and gender. We compare their perfor-
mance with sparse representations obtained from a bag-of-words model. We observe that the learned generalized
representations significantly outperform the sparse representations when we have few positive instances to learn
from, and there is an absence of strong lexical features. 2. We compare the model performance of the feature set
constructed from a bag of words to that obtained from medical concepts. In the latter case, concepts represent
problems, treatments, and tests. We find that concept identification does not improve the classification per-
formance. 3. We propose novel techniques to facilitate model interpretability. To understand and interpret the
representations, we explore the best encoded features within the patient representations obtained from the
autoencoder model. Further, we calculate feature sensitivity across two networks to identify the most significant
input features for different classification tasks when we use these pretrained representations as the supervised
input. We successfully extract the most influential features for the pipeline using this technique.

1. Introduction

Representation learning refers to learning features of data that can
be used by machine learning algorithms for different tasks. Sparse re-
presentations, such as a bag of words from textual documents, treat
every dimension independently. For example, in one-hot sparse re-
presentations, the terms ‘pain’ and ‘ache’ correspond to separate di-
mensions despite being synonyms of each other. Several techniques
exist to model such dependence and reduce sparsity. The generalized or
distributed representations learned using these techniques are referred
to as low dimensional, or dense data representations. Unsupervised
techniques for representation learning have become popular due to
their ability to transfer the knowledge from large unlabeled corpora to
the tasks with smaller labeled datasets, which can help circumvent the
problem of overfitting [1].

Representation learning techniques have been used extensively
within and outside the clinical domain to learn the semantics of words,
phrases, and documents [2,3]. We apply such techniques to create a
patient semantic space by learning dense vector representations at the
patient level. In a patient semantic space, “similar” patients should have

similar vectors. Patient similarity metrics are widely used in several
applications to assist clinical staff. Some examples are finding similar
patients for rare diseases [4], identification of patient cohorts for dis-
ease subgroups [5], providing personalized treatments [6,7], and pre-
dictive modeling tasks such as patient prognosis [8,9] and risk factor
identification [10]. The notion of patient similarity is defined differ-
ently for different use cases. When it is defined as an ontology-guided
distance between specific structured properties of patients such as
diseases and treatments, it represents patient relationships corre-
sponding to those properties. For example, if patient similarity is cal-
culated as a hierarchical distance between the primary diagnostic codes
of patients in the UMLS®metathesaurus [11], the value represents a
diagnostic similarity. When it is defined as an intersection between the
sets of blood tests performed on patients, patient similarity maps to
blood test similarity. If patient similarity value is 1 for the patients of
the same gender and 0 otherwise, groups of similar patients are gender-
specific patient cohorts. However, when we calculate similarity be-
tween distributed patient representations, the different properties that
influence the similarity value are unknown. Within the learned patient
representations, we aim to capture similarity on multiple dimensions,
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such as complaints, diagnoses, procedures performed, etc., which
would encapsulate a holistic view of the patients.

In this work, we create unsupervised dense patient representations
from clinical notes in the freely available MIMIC-III database [12]. We
aim to learn patient representations that can later be used to identify
sets of similar patients based on representation similarity. We focus on
different techniques to learn patient representations using only textual
data. We explore the usage of two neural representation learning ar-
chitectures—a stacked denoising autoencoder [13], and a paragraph
vector architecture [14]—for unsupervised learning. We then transfer
the representations learned from the complete patient space to different
supervised tasks, with an aim to generalize better on the tasks for which
we have limited labeled data.

Dense representations can capture semantics, but at a loss of in-
terpretability. Yet, it is critical to understand model behavior when
statistical outputs influence clinical decisions [15]. We take a step to-
wards bridging this gap by proposing different techniques to interpret
the information encoded in the patient vectors, and to extract the fea-
tures that most influence the classification output when these re-
presentations are used as the input.

2. Related work

Dense representations of words [16–19] and documents [14,20] have
become popular because they are learned using unsupervised techni-
ques, they capture the semantics in the content, and they generalize
well across multiple tasks and domains. An autoencoder learns the data
distribution and the corresponding dense representations in the process
of first encoding data into an intermediate form and then decoding it.
Miotto et al. [21] first proposed the use of a stacked denoising auto-
encoder to learn patient representations. They have shown promising
results when patient vectors are first learned by a stacked denoising
autoencoder from structured data combined with 300 topics from un-
structured data, and are then used with Random Forests classifiers to
identify future disease categories of patients. Following their work,
Dubois et al. [22] have proposed two techniques to obtain patient re-
presentations from clinical notes. The first technique is unsupervised
and performs an aggregation of concept embeddings into note and
patient level representations, known as ‘embed-and-aggregate’. The
second technique uses a recurrent neural network (RNN) with a bag-of-
concepts representation of patient notes as time steps. The RNN is
trained to predict disease categories of patients. The representations
learned in this supervised setup are then transferred to other tasks.
Apart from these works, Suresh et al. [23] have performed a pre-
liminary exploration of the use of sequence-to-sequence autoencoders
to induce patient phenotypes using structured time-series data. They
have compared different autoencoder architectures based on their re-
construction error when they are trained to encode patient phenotypes.
An application of these phenotypes to different clinical prediction tasks
has been reserved for future work. In the same vein as these previous
works, we investigate the applicability of a stacked denoising auto-
encoder to learn patient representations directly from unstructured data,
and analyze the tasks that these representations can be successfully
applied to.

One of the evaluation tasks for us is patient mortality prediction.
Johnson et al. [24] provide a good overview of the previous approaches
for mortality prediction on the MIMIC datasets with an aim of re-
plicating the experiments. Following the work by Ghassemi et al. [25],
Grnarova et al. [26] have shown significant improvements for mortality
prediction tasks on using a two-level convolutional neural network
(CNN) architecture, as compared to the use of topic models and
doc2vec representations as inputs to linear support vector machines
(SVMs). Besides these works, Jo et al. [27] have recently used long
short term memory networks (LSTMs) and topic modeling for mortality
prediction. They treat topics for patient notes as time steps for LSTMs.
These topics are learned jointly using an encoder network. They have

shown performance gains when the topics are jointly learned, com-
pared to those pretrained using LDA [28].

3. Methods

3.1. Learning patient representations

In this section, we describe a stacked denoising autoencoder and a
paragraph vector architecture doc2vec, in the context of learning task-
independent dense patient representations in an unsupervised manner.
The corresponding methodology for learning these dense representa-
tions is illustrated in Fig. 1.

3.1.1. Stacked denoising autoencoder
Given the previous success of autoencoders for representation

learning using structured data with or without topic models learned
from unstructured data, we explore the use of a stacked denoising au-
toencoder (SDAE) [13] to learn task-independent patient representa-
tions from raw clinical text, forgoing the use of intermediate techniques
like topic modeling. Although the premise of learning patient re-
presentations using an SDAE is not novel in itself, our contribution lies
in analyzing if such a model is also successful when used only with
clinical notes, and if the learned representations can be successfully
applied for a range of tasks that are different from patient prognosis.
This analysis gives us insight into successful and transferable patient
representation architectures for unstructured data.

During the pretraining phase, every layer of an SDAE is sequen-
tially trained as an independent denoising autoencoder. An auto-
encoder learns to first encode the input data I into an intermediate
representation R, and then decode R into I. Denoising refers to the
process of first adding noise to corrupt the input I into ∼I , and then
training an autoencoder to reconstruct I using ∼I as the input. We use the
dropout noise [29], where a random proportion of the input nodes are
set to 0. In the process of denoising, the model also learns the data
distribution. In an SDAE, the intermediate representations obtained
from the autoencoder at layer −n 1 are used as the uncorrupted input to
the autoencoder at layer n, for all the layers in the SDAE. To pretrain
patient representations using an SDAE, high-dimensional (sparse) pa-
tient data are used as the input to the autoencoder at the first layer of
the SDAE. The intermediate representations obtained from the auto-
encoder at the final layer are treated as the low-dimensional (dense)

Fig. 1. An overview of the patient representation pipeline. The dashed lines
indicate one of several operations, and are not performed in parallel.
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