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A B S T R A C T

Methods based on microarrays (MA), mass spectrometry (MS), and machine learning (ML) algorithms have
evolved rapidly in recent years, allowing for early detection of several types of cancer. A pitfall of these ap-
proaches, however, is the overfitting of data due to large number of attributes and small number of instances – a
phenomenon known as the 'curse of dimensionality'. A potentially fruitful idea to avoid this drawback is to
develop algorithms that combine fast computation with a filtering module for the attributes. The goal of this
paper is to propose a statistical strategy to initiate the hidden nodes of a single-hidden layer feedforward neural
network (SLFN) by using both the knowledge embedded in data and a filtering mechanism for attribute re-
levance. In order to attest its feasibility, the proposed model has been tested on five publicly available high-
dimensional datasets: breast, lung, colon, and ovarian cancer regarding gene expression and proteomic spectra
provided by cDNA arrays, DNA microarray, and MS. The novel algorithm, called adaptive SLFN (aSLFN), has
been compared with four major classification algorithms: traditional ELM, radial basis function network (RBF),
single-hidden layer feedforward neural network trained by backpropagation algorithm (BP-SLFN), and support
vector-machine (SVM). Experimental results showed that the classification performance of aSLFN is competitive
with the comparison models.

1. Introduction

Gene expression arrays offer an effective solution for analyzing
expression of known genes and transcripts, thus providing valuable
information of gene activity in biological samples. Proteomic spectra
have evolved into an essential tool for identifying proteomic patterns in
serum, widely used in analyzing biological samples. Prospects for ef-
fective and reliable cancer diagnosis and treatment have improved
significantly with the use of MA and MS technologies [1–8]. The mas-
sive amount of data resulting from these technologies needs to be
analyzed by complex computational tools, among which the ML algo-
rithms stand out. ML and MA technologies have been successfully used
for non-small cell lung cancer [9], identification of varying genes ex-
pression in breast cancer [10], and quantitative diagnosis of breast
tumors [11]. MS and ML techniques have also been fruitfully used in
differentiation of benign and malignant liver tumors [12], breast cancer
[13], and colorectal cancer [14].

However, there are two practical issues limiting the use of ML al-
gorithms as classifiers for microarray data and mass spectra from

proteomics. One is the ‘curse of dimensionality’ because thousands or
tens of thousands of features characterize these data. The other is the
‘curse of dataset sparsity’ because the number of available instances is
limited. In this context, the development of ML algorithms that combine
fast computation speed with feature selection capability could solve
these two problems, with a special focus on computer-aided medical
diagnosis.

Fairly recently, extreme learning machine (ELM) has been proposed
as a new learning algorithm for SLFNs [15–17]. It is noteworthy that
this approach has caused some debate in the ML community [18]. Yet,
various versions of ELM have been proposed [19–21], and ELM and its
variants are now used in various medical applications including heart
diseases [22], diabetes [23], and detection of different types of cancer
(lung, breast, leukemia, and colon) [24–26].

A proper initialization of the weights in a neural network is a matter
of great importance to its convergence. Although there is a rich lit-
erature on this topic, we will mention only a small part of it. In [27], an
algorithm based on Cauchy's inequality and a linear algebraic method
for determining the optimal initial weights of feedforward neural
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networks was proposed. A genetic algorithm approach was used as an
alternative to the backpropagation (BP) learning algorithm for both
synaptic weights initialization and optimization of a SLFN [28]. Deep
and recurrent neural networks can be trained successfully by a well-
designed random initialization and a particular type of slowly in-
creasing schedule for the momentum parameter, used by the stochastic
gradient descent [29]. A training technique was proposed in [30]
combining error-correction learning with posterior probability dis-
tribution of weights given the error function, and Goodman–Kruskal
Gamma rank correlation, assembling them in a Bayesian learning
strategy. In [31], a method for weight initialization is proposed for deep
net learning, Layer-sequential unit-variance (LSUV), consisting of pre-
initializing weights of each convolution or inner-product layer with
orthonormal matrices, and normalizing the variance of the output of
each layer, from the first to the final layer.

The learning paradigm behind ELM is based on the random choice
of the hidden nodes, seen as the key component of the ELM model, and
the analytical calculation of the output weights. In the classical case,
ELM is trained in two steps: (1) the weights connecting inputs and
hidden nodes are randomly assigned and never updated, and (2) a least
square solution is used for the output layer. Inspired by the way of
initializing the hidden nodes of ELM, the current work proposes a novel
technique to set the parameters of the hidden layer of a SLFN. One of
the major debate topics regarding ELM is the random initialization,
which is independent from applications. Our approach has been con-
ceived as an alternative to this initialization. Instead of randomly
generating the hidden nodes of SLFN, they are now problem-dependent
and estimated using the statistical relation between attributes and class
labels. In real-world applications, problems of nonlinear monotonic
relationship between variables, and the existence of many tied ob-
servations in data are frequently encountered. Under these circum-
stances, we considered generating the hidden nodes using the non-
parametric Goodman-Kruskal Gamma rank correlation between attri-
butes and class labels, thus having a reliable quantification of the
knowledge embedded in data. The current approach offers the possi-
bility of dealing with very large datasets or dataset dimensions by
substantially speeding up training time as compared to BP, and en-
hances classification capability due to the novel initialization of the
input weights in one step, while avoiding the possible drawback gen-
erated by their random choice. However, the computation speed may
decrease in case of large dataset or large dimensions, due to the fact
that all the rank correlations between attributes and class labels must be
calculated and used. To avoid this situation commonly encountered in
practice, an embedded filtering module of each attribute's contribution
has been designed. Thus, only the rank correlations that are truly sig-
nificant for classification, based on the corresponding p-value, are kept
for the initiation of the hidden node parameters.

The remainder of this paper is organized in five sections. Section 2
presents both the design and implementation of the novel model.
Section 3 presents the benchmarking datasets and briefly summarizes
the statistical framework for performance assessment. Section 4 pre-
sents the experimental results, model assessment, and corresponding
discussions. Section 5 addresses the conclusions and future work.

2. Materials and methods

This paper proposes a novel initialization of a SLFN’s input weights,
using the knowledge embedded in the connections between attributes
and class labels, expressed by the non-parametric Goodman-Kruskal
Gamma rank correlation. The new algorithm has been inspired by ELM
through the property that parameters of hidden nodes do not need to be
updated, and the computation of the network output. A short pre-
sentation of the traditional ELM training algorithm will be given below,
followed by the novel adaptive initialization of the input weight and the
embedded filtering module algorithm.

2.1. Summarization of ELM algorithm

ELM represents a special case of SLFN, characterized by a single
layer of hidden units. The synaptic weights connecting inputs to hidden
units are randomly initialized, whereas the synaptic weights between
the hidden units and the outputs are optimized by a Moore-Penrose
generalized inverse. Three steps summarize the ELM training algorithm
[15]:

Given the training set TS, the activation function f x( ), and a
number ∼N of hidden nodes:

Step 1: Randomly assign the input weight wi and bias bi, i=1, 2, …,
∼N .
Step 2: Calculate the hidden layer output matrix H.
Step 3. Calculate the output weight = +β H T , where H is the hidden
layer output matrix, H+ is the Moore-Penrose generalized inverse of
H, and T is the output vector.

2.2. Knowledge embedded in data

A TS used in supervised learning contains objects characterized by
inputs (features) and outputs (classes). Consider that TS contains N
objects x1, x2, …, xN. Each object in the dataset is coded as a vector xk
= x x x y( , ..., , ..., ; )k

i
k

p
k

k1 , where xi
k, i = 1, 2, …, p, represents the i-th

feature of the object xk, k= 1, 2, …, N, and yk represents the label
corresponding to object xk, that is the decision class Cj , j=1, 2, …, q.
From a probabilistic point of view, one can reasonably assume that, for
each k= 1, 2, …, N, the attribute values xi

k belonging to the attribute
Ai, i = 1, 2, …, p, are governed by a random variable (r.v.)Xi. The set
{x x x, , ...,i i i

N1 2 } represents, from a statistical point of view, a random
sample of length N corresponding to the r.v. Xi. Without loss of gen-
erality, one can consider the naïve assumption that all attributes are
independent of each other, i.e., the parent r.v.’s Xi, i = 1, 2, …, p are
independent. One can also assume that, for each object xk, the class
labels yk, corresponding to the class labels Cj , j=1, 2, …, q, are gov-
erned by a categorical r.v. Y. The set {y y y, , ...,j j j

N1 2 } represents, from a
statistical point of view, a random sample of length N corresponding to
the categorical r.v. Y.

A direct and simple way to discover potential information em-
bedded in data is to highlight the statistical dependence between the
parent r.v.’s Xi, i = 1, 2, …, p, of attributes and the parent r.v. Y of the
decision class. To this end, taking into account a common case in real-
world applications assuming a non-linear monotonic relationships be-
tween variables and the existence of many tied observations in data, we
have chosen the non-parametric Goodman-Kruskal Gamma rank cor-
relation Γ, although there are other alternative options (e.g., Spearman
rank ρ, Kendall Tau, etc.). The rank correlation Γ is based on the dif-
ference between concordant pairs (C) and discordant pairs (D), and
computed as = − +C D C DΓ ( )/( ).

2.3. Adaptive SLFN algorithm (aSLFN)

The “adaptive” attribute refers to two distinct aspects. Firstly, it is
the way to initiate the hidden nodes. They are initiated based on the
natural connection between attributes and classes, that is the “adapta-
tion” of the algorithms to existing data, and not independently of data,
as in the traditional ELM case. Secondly, the algorithm “adapts” further
to existing data by taking into account the level of influence of each
attribute on the class through the embedded filtering module.

2.3.1. Adaptive initiation of hidden nodes
Let ∼N be the number of hidden nodes of the network. As it is natural

for the network to adapt to the problem at hand, it has a flexible
structure, tailored according to the dataset used, so the number of
hidden nodes changes on a case-by-case basis. Denote by wij, i = 1, 2,
…, p, h=1, 2,…, ∼N , the synaptic weight connecting the input attribute
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