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A B S T R A C T

Introduction: Accurate and timely prediction for endemic infectious diseases is vital for public health agencies to
plan and carry out any control methods at an early stage of disease outbreaks. Climatic variables has been
identified as important predictors in models for infectious disease forecasts. Various approaches have been
proposed in the literature to produce accurate and timely predictions and potentially improve public health
response.
Methods: We assessed how the machine learning LASSO method may be useful in providing useful forecasts for
different pathogens in countries with different climates. Separate LASSO models were constructed for different
disease/country/forecast window with different model complexity by including different sets of predictors to
assess the importance of different predictors under various conditions.
Results: There was a more apparent cyclicity for both climatic variables and incidence in regions further away
from the equator. For most diseases, predictions made beyond 4 weeks ahead were increasingly discrepant from
the actual scenario. Prediction models were more accurate in capturing the outbreak but less sensitive to predict
the outbreak size. In different situations, climatic variables have different levels of importance in prediction
accuracy.
Conclusions: For LASSO models used for prediction, including different sets of predictors has varying effect in
different situations. Short term predictions generally perform better than longer term predictions, suggesting
public health agencies may need the capacity to respond at short-notice to early warnings.

1. Introduction

Outbreaks such as those caused by the Severe Acute Respiratory
Syndrome Coronavirus (SARS CoV), the influenza A(H1N1)pdm09
pandemic of 2009, and more recently the Middle East Respiratory
Syndrome Coronavirus (MERS-CoV), Ebola virus and Zika virus have
demonstrated the high potential risk of emerging and re-emerging in-
fectious diseases to spread within and between countries [1–5]. These
in turn cause increasing challenges for public health systems, including
the increasing burden of infectious disease, and the need to build a
surveillance and response system that is able to identify newly emer-
ging disease rapidly, both regionally and internationally which calls for
international collaboration, and the need for drug and vaccine research
and production [6–8]. While the response to endemic diseases may be
less urgent, the burden caused by pathogens such as influenza or ma-
laria is high [9–11], and due to their endemicity, many countries have

long standing surveillance systems to track outbreaks and guide re-
sponse, from vector control to hospital bed utilization [12–15]. Early
warning systems aiming to predict epidemics as soon as possible can
allow control methods to be carried out rapidly and increase their
chance of success [16,17]. To do so, decision makers need to be able to
make accurate forecasts of incidence and to automate this forecasting
process based on routinely collected notification data [18]. If accurate
forecasts were available in both the near and far future, effective po-
licies could then be targeted to the expected future needs. Existing
approaches to real-time forecasting include generalized linear regres-
sion, seasonal autoregressive integrated moving average (SARIMA)
model or a simpler ARIMA form of it, phenomenological models like the
logistic growth model and Richards model, and mechanistic models like
the SIR models [19–24]. Often such approaches involve the challenge of
integrating environmental factors including temperature, humidity and
rainfall, which may influence pathogen transmission directly or affect
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the vector activities (for vector borne diseases), especially in temperate
regions [25–29]. For instance, influenza virus is more transmissible in
low temperature and low humidity conditions [30,31], while the pri-
mary vector of dengue, the yellow fever mosquito Aedes aegypti, favors
higher temperature [32,33]. The availability of real time data-streams
on seasonal variation and climatic variability therefore holds the po-
tential to lead to more accurate prediction algorithms, potentially im-
proving public health response.

Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion is a machine learning method that can find patterns within large
datasets while avoiding the problem of over-fitting [34]. Estimation
and variable selection are simultaneously carried out using the LASSO
method, and as such it is commonly used in studies in fields with large
numbers of explanatory variables to reduce the variable space. This
algorithm trades off model accuracy with model parsimony by in-
troducing a penalty term into the objective function (which in standard
linear regression is the sum of squares of residuals). The penalty term
can, for linear regression models, be made equivalent to a constraint on
the sum of the absolute parameter coefficients. This constraint imposed
by LASSO regression has the effect of shrinking some estimated coef-
ficients towards zero, which may help reduce biases caused by se-
paration in some forms of regression [35], while simultaneously pro-
ducing some parameter estimates that are exactly 0, so that the
covariate associated with this coefficient is not associated with the
outcome variable in that model. The optimal balance between model
accuracy and complexity is typically obtained through cross-validation:
repeatedly partitioning the data into training and validation sets,
varying the degree of penalty, optimizing the regression parameters for
each penalty value, then selecting the penalty that minimizes out of
sample predictive accuracy. Computationally efficient methods to ex-
plore the penalty and parameter space exist [36], making it feasible to
use LASSO as part of a ‘real-time’ forecasting pipeline for routinely
collected health data such as infectious disease notifications. This
computational speed allows the forecasting to adapt to changes in the
underlying disease dynamics by permitting refitting of the model each
time new data are reported, which may be important for diseases in
which the severity changes between outbreaks, such as influenza [37].
Forecasts at different time horizons can be obtained through splicing
together separate LASSO models, each trained on the data available at
the time of the forecast, but tailored to predict at different windows into
the future.

The LASSO method has previously been used in dengue outbreak
prediction in Singapore, where it is now routinely used to guide vector
control policy [38]. The objective of this paper is to apply the LASSO
method to infectious disease forecasting and assess more generally in
which situations LASSO models will provide useful forecasts. Unlike
conventional use of the LASSO method to variable selection, the pri-
mary interest of our application of the LASSO-based method on in-
fectious disease data is to make forecast of incidences in the future,
rather than to identify the potential risk factors to explain the epidemics
of these infectious diseases.

In particular, we assess for diseases with different transmission
modalities, in different climatic zones, how accurate short to medium
time forecasts can be, and what data streams are necessary for accurate
forecasts. We apply the method to four countries from different
latitudes—Japan, Taiwan, Thailand and Singapore—to cover tempe-
rate, sub-tropical and tropical settings.

2. Methods

2.1. Sources of data

Four representative countries with distinct climates were selected
for analysis based on Köppen-Geiger climate classification [39] – Japan
with humid continental and subtropical climate; Taiwan with humid

subtropical and oceanic climate; Thailand with tropical wet and sa-
vannah climate and Singapore with tropical rainforest climate. Four
representative infectious diseases were included in the study: two
mosquito-borne infections (Dengue and Malaria) and two infections
that spread from person to person (Hand Foot and Mouth Disease
(HFMD) and Chickenpox). For all four pathogens, a relationship has
previously been found between incidence and climatic variables
[40–42] or for there to be a seasonality to incidence [43]. Not all four
pathogens were considered for each country: some are not present in
each country while others are not captured in routine infectious disease
surveillance systems.

The notified numbers of chickenpox, HFMD cases in Japan were
collected by the National Institute of Infectious Diseases (NIID) [44].
Both were reported as average cases per week per sentinel reporting, to
accommodate varying reporting rates. We extracted weekly data from
2001 to 2012.

Monthly reported cases of chickenpox, dengue, and malaria in
Thailand for the period 2003–2013 were obtained from the Bureau of
Epidemiology, Department of Disease Control, Ministry of Public
Health, Thailand [45]. The number of incident cases were collected
from government hospitals, public health offices and health centers by
the National Disease Surveillance [46] and were reported online.

Ministry of Health, Singapore, actively monitors and publishes the
incidence of dengue and HFMD in Singapore, both being notifiable
diseases. Weekly number of incidences for the period 2003 and 2014
were obtained from the Weekly Infectious Diseases Bulletin [47].

Weekly number of dengue cases from 2003 to 2014 were extracted
from Taiwan National Infectious Disease Statistics System [48]. Both
indigenous and imported cases were included in the count.

Epidemiological week as per US Centers for Disease Control and
Prevention was used in our analysis using the EpiWeek package in R
[49].

Climatic data for Taiwan, Thailand and Singapore were obtained
from the Weather Underground [50] which documented among other
variables, historical temperature, humidity, sea level pressure, and
visibility. Only temperature (daily highest, average and lowest) and
relative humidity (daily highest, average and lowest) were used in our
models due to insufficient historical data of other climatic variables.
Climatic data for Japan were obtained from the Japan Meteorological
Agency [51], which provides and archives various weather information.
Weekly mean temperature, relative humidity and rainfall information
were used in our model. For all locations, the weather data at the ca-
pital (Tokyo, Taipei, Bangkok and Singapore) was used to represent
overall national weather.

2.2. Statistical analysis

Wavelet analyses were done to explore periodicity of all endemic
diseases and climatic variables in four countries. The wavelet approach
was based on a wavelet function which analyses locality in time and
frequency [52]. Wavelet transformation (W s( )t ) as the convolution of
the time series xt with Morlet function ψ η( )0 at scale s was conducted:
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nondimensional frequency and is set to 6 to satisfy the admissibility
condition [53].

The wavelet transformation W s( )t can be divided into amplitude,
W s| ( )|t , and phase, − W s W stan [ { ( )}/ { ( )}]n n

1 I R , where W s{ ( )}nR is the real
part of the transform and W s{ ( )}nI the imaginary part. The wavelet
power spectrum is defined as W s| ( )|t

2 [54].
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