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In order for clinicians to manage disease progression and make effective decisions about drug dosage, treatment
regimens or scheduling follow up appointments, it is necessary to be able to identify both short and long-term
trends in repeated biomedical measurements. However, this is complicated by the fact that these measurements
are irregularly sampled and influenced by both genuine physiological changes and external factors. In their
current forms, existing regression algorithms often do not fulfil all of a clinician’s requirements for identifying
short-term (acute) events while still being able to identify long-term, chronic, trends in disease progression.
Therefore, in order to balance both short term interpretability and long term flexibility, an extension to broken-
stick regression models is proposed in order to make them more suitable for modelling clinical time series. The
proposed probabilistic broken-stick model can robustly estimate both short-term and long-term trends si-
multaneously, while also accommodating the unequal length and irregularly sampled nature of clinical time
series. Moreover, since the model is parametric and completely generative, its first derivative provides a long-
term non-linear estimate of the annual rate of change in the measurements more reliably than linear regression.
The benefits of the proposed model are illustrated using estimated glomerular filtration rate as a case study used

Clinical time series

to manage patients with chronic kidney disease.

1. Introduction

The trend in measurements of clinical interest such as blood sugar,
cholesterol or kidney function can provide insight into the change over
time in a patient’s condition. For patients with chronic illnesses such as
diabetes and chronic kidney disease (CKD), monitoring of these mea-
surements is necessary in order to effectively manage the condition. For
example, in order for clinicians to make effective decisions about drug
dosage, treatment regimens or when scheduling follow up appoint-
ments, it is necessary to know not only the value of these indicators, but
also to have an idea of both the short- and long-term trajectory they are
following. However, modelling the trend of biomedical measurements
over the long-term can be complicated by both practical, e.g. the irre-
gular taking of measurements and lengthy gaps between them, and
biological considerations. For example, the primary indicator of kidney
function, the estimated glomerular filtration rate (eGFR), can be in-
fluenced by, amongst other things, the level of protein in the diet,
changes in muscle breakdown and the level of hydration [1]. This can
lead to substantive variability in a patient’s eGFR measurements [2,3].

* Corresponding author at: QuintilesIMS, London, UK.
E-mail address: norman.poh@quintilesims.com (N. Poh).

https://doi.org/10.1016/j.jbi.2017.10.006

Unfortunately, existing regression algorithms such as linear, poly-
nomial and Gaussian process regression (GPR) [4] either cannot ac-
count for these challenges or do not satisfy the key clinical require-
ments of providing an easily interpretable model that can elucidate
short- and long-term trends.

Biomedical measurements are irregularly sampled, posing an addi-
tional challenge to analysis. Prior work in time series analysis has
strongly emphasised regularly sampled data, resulting in fewer methods
that exist specifically for analysing irregularly sampled data. Despite
methods for analysing irregular time series data directly having been
employed successfully [5-7], the most common approach is still to
transform the data to enforce regularity using either interpolation
techniques or regression analysis [8]. However, with biomedical time
series interpolation can present its own problems due to the measure-
ments not always being taken at random, but rather requested at spe-
cific times by clinicians, e.g. as part of routine monitoring or as follow
up to treatment. On the other hand, regression imposes a number of
assumptions on both the variables and their relationships. For example,
linear regression assumes a linear relationships between the dependent
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Fig. 1. An eGFR time series (blue) modelled using linear interpolation in order to produce
a fixed-size vector of 50 observations (red) over the age range for which the patient has
eGFR measurements [13]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

and independent variables and independence of the residuals (no auto-
correlation); assumptions which are usually violated in biomedical time
series. Often linearity is violated due to an acute episode. For example,
when a patient suffers an acute kidney injury (AKI) [9-12] their eGFR
will drop sharply and potentially recover a short time after (as seen in
Fig. 1). Long-term trends may therefore exhibit local fluctuations due to
genuine physiological changes as well as external factors.

More flexible models such as Gaussian process regression (GPR)
[14], multivariate adaptive regression splines [15] and multivariate
additive models [16] can be used instead to provide the desired flex-
ibility. For example, through the use of a kernel function GPR can avoid
making the assumptions of linear regression. However, when there are
gaps between the data, as is often the case with biomedical time series,
the estimated variance of the predicted output can ‘explode’ [13]
(Fig. 2). Consequently, these models are less interpretable, and there-
fore lose out in situations where a clinician simply needs to know
whether a patient’s condition is progressing or improving.

In order to strike a balance between interpretability and flexibility,
broken-stick regression, also known as segmented or piece-wise re-
gression, can be used to linearly model local trends [17-20]. However,
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Fig. 2. The GPR model shows relatively low variance when the gap between measure-
ments is small, but the variance increases markedly when the measurements are sparse.
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Table 1
Notation.
Variable =~ Domain Meaning
T  Vector of real numbers  The time domain
t Integer Enumerator of the time domain, from 1 to T
w  Integer Enumerator of the window, from 1 to W
L  Vector of integers Indices storing the beginning of window
U  Vector of integers Indices storing the end of a window
6w Model parameters Parameters of the w-th line segment
6  All model parameters {6w! Vi }
Ag Integer Window interval of length d in year
W Integer Number of windows
. 1(W) Integer Line segment gradient
, éw) Integer Line segment intercept
/"r(w) Integer Mean value of the time window

in this formulation local discontinuities are introduced at the segment
boundaries, resulting in a loss of smoothness and consequently in the
inability to infer trends in the boundary regions reliably. To address this
we take a Bayesian approach to derive a long-term trend by enforcing a
smooth transition between the locally linear line segments, while still
preserving the local trends. The ability to capture both long- and short-
term trends makes this approach ideally suited to modelling biomedical
time series in a clinical context. Additionally, by enforcing smoothness
local rates of change can be derived, giving clinicians an indication of
whether a patient’s condition is progressing or not. Finally, a broken-
stick model can accommodate gaps in a time series through choosing
the length of each line segment in a manner that ensures that there are a
sufficient number of measurements within each segment and can mi-
tigate overfitting as it fits only locally linear line segments.

2. Methodology

Here, X is used to denote a vector and X|[t] to denote the element in
the vector indexed by t. The remainder of the notation used is given in
Table 1.

2.1. Windowing

The first step in fitting the broken-stick model is the division of a
time series into a number of windows. Here, windows of equal length d
were used across all time series, although there is no constraint re-
quiring the windows to be of equal length across or within individual
time series. The window length was determined from the data based on
the intervals between measurements, as there should be at least three
measurements within each window in order to avoid overfitting line
segments. In general, having more measurements within each window
is preferable. However, it is only possible to influence the number of
measurements within a window by increasing d, as the number of
measurements in each time series is fixed. Given that larger values of d
may result in local fluctuations going undetected, while smaller values
of d may lead to measurement noise dominating the model, the window
length must be optimised for each application.

2.2. Local fitting

Given d and a specified interval to slide the window by, Ay, the
number of windows W is also determined. For each window, a linear

regression is performed by:
K1) = ™ Xt + g, @

where o) is the gradient and w{" is the intercept for the w-th window
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