
Accepted Manuscript

Improving Condition Severity Classification with an Efficient Active Learning Based Framework

Nir Nissim, Mary Regina Boland, Nicholas P Tatonetti, Yuval Elovici, George Hripcsak, Yuval Shahar, Robert Moskovitch

PII:	\$1532-0464(16)30007-7
DOI:	http://dx.doi.org/10.1016/j.jbi.2016.03.016
Reference:	YJBIN 2546
To appear in:	Journal of Biomedical Informatics
Received Date:	29 October 2015
Revised Date:	31 January 2016
Accepted Date:	21 March 2016

Please cite this article as: Nissim, N., Boland, M.R., Tatonetti, N.P., Elovici, Y., Hripcsak, G., Shahar, Y., Moskovitch, R., Improving Condition Severity Classification with an Efficient Active Learning Based Framework, *Journal of Biomedical Informatics* (2016), doi: http://dx.doi.org/10.1016/j.jbi.2016.03.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Improving Condition Severity Classification with an Efficient Active Learning Based Framework

Nir Nissim¹, Mary Regina Boland^{2,5}, Nicholas P Tatonetti²⁻⁵, Yuval Elovici¹, George Hripcsak^{2,5}, Yuval Shahar¹, Robert Moskovitch²⁻⁵

¹Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel ²Department of Biomedical Informatics, ³Department of Systems Biology, ⁴Department of Medicine, ⁵Observational Health Data Sciences and Informatics, Columbia University, New York, New York, USA

Keywords

Active Learning, Electronic Health Records, Phenotyping, Condition, Severity.

List of Abbreviations:

CAESAR: Classification Approach for Extracting Severity Automatically from Electronic Health Records **CAESAR-ALE:** Classification Approach for Extracting Severity Automatically from Electronic Health

Records – Active Learning Enhancement

EHR: Electronic Health Record

AL: Active Learning

SVM: Support Vector Machines

VS: Version Space

SNOMED-CT: Systemized Nomenclature of Medicine-Clinical Terms

ICD-9: International Classification of Diseases - Version 9

SVM-Margin: Support Vector Machines-Margin Method - an existing AL method oriented towards acquiring informative conditions that lie closest to the separating hyperplane (inside the margin).

Exploitation: An AL method included in the CAESAR-ALE framework that is oriented towards acquisition of severe conditions.

Combination_XA: An AL method included in the CAESAR-ALE framework that combines elements of the Exploitation method and the SVM-Margin method, so that it applies a hybrid acquisition strategy for enhanced improvement of the CAESER method.

Corresponding Authors: Name: Nir Nissim, Robert Moskovitch Address: Ben-Gurion University of the Negev, P.O.B 653, Beer-Sheva, Israel 84105 Phone No.: +972 086428121

Email: nirni@post.bgu.ac.il, robert.moskovitch@columbia.edu

Download English Version:

https://daneshyari.com/en/article/6927765

Download Persian Version:

https://daneshyari.com/article/6927765

Daneshyari.com