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29Understanding causal relationships among large numbers of variables is a fundamental goal of biomed-
30ical sciences and can be facilitated by Directed Acyclic Graphs (DAGs) where directed edges between
31nodes represent the influence of components of the system on each other. In an observational setting,
32some of the directions are often unidentifiable because of Markov equivalency. Additional exogenous
33information, such as expert knowledge or genotype data can help establish directionality among the
34endogenous variables. In this study, we use the method of principle component analysis to extract infor-
35mation across the genome in order to generate a robust statistical causal network among phenotypes, the
36variables of primary interest. The method is applied to 590,020 SNP genotypes measured on 1596 indi-
37viduals to generate the statistical causal network of 13 cardiovascular disease risk factor phenotypes.
38First, principal component analysis was used to capture information across the genome. The principal
39components were then used to identify a robust causal network structure, GDAG, among the phenotypes.
40Analyzing a robust causal network over risk factors reveals the flow of information in direct and alterna-
41tive paths, as well as determining predictors and good targets for intervention. For example, the analysis
42identified BMI as influencing multiple other risk factor phenotypes and a good target for intervention to
43lower disease risk.
44� 2016 Published by Elsevier Inc.
45

46

47

48 0. Introduction

49 Interindividual variation in disease susceptibility is influenced
50 by genetic variants, which can be organized into a defined biologic
51 pathways or data-driven associative networks [1–3]. By identifying
52 variables correlated with the primary endpoint of interest, we are
53 able to classify individuals and predict future disease. Going
54 beyond partial correlations and evaluating causal relationships
55 among variables plays an essential first step in risk prediction,
56 thereby promoting more efficacious treatment of current disease
57 and prevention of future disease. By changing the level of a causal
58 variable (e.g. LDL-cholesterol levels), we are able to change the risk
59 of future disease (e.g. coronary heart disease), which may not be
60 the case for mere associated variables (e.g. HDL-cholesterol levels)
61 [4]. In the case of a randomized intervention, such as a clinical trial,
62 identification of causation is conceptually straight forward. How-
63 ever, in observational studies, which represent the majority of
64 most large-scale epidemiologic studies, causal inference is more

65complex. In most applications, especially ‘‘big data” applications,
66causal inference is embodied in Directed Acyclic Graphs (DAGs),
67where any inference is based on an estimated graph (i.e. nodes
68and edges). DAGs are illustrations of causal relationships among
69the variables. Mendelian randomization is an established approach
70to identify causal relationships [5–8] and it is natural in a biomed-
71ical setting to integrate genomics and phenotypic information to
72help establish directionality within a network of phenotypes. We
73apply this technique in large data sets from different granularities
74to achieve robust causal graphs (i.e. DAGs). In the present context,
75granularities are defined as hierarchical levels with different quid-
76dity that the causal relationship between them is known, e.g. they
77are reflecting different levels of biologic organization and measure-
78ment (genomic and phenotypic, [4]). In the application shown
79here, we use data from a deeper granularity, the genome, to gener-
80ate a robust statistical causal network among 13 risk factor pheno-
81types. Inclusion of genotypes in the analysis of phenotypes (e.g.
82plasma glucose levels) provides two advantages: first, genotypes
83are assumed to be measured without error, and second, there is a
84natural order between these granularities (genome variation ?
85phenotype variation; G ? P) and this knowledge helps identify
86robust directionality in the upper granularity.
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87 Using genome information is a promising approach to identify
88 directionality that is less susceptible to confounding. Previous
89 applications in data integration using gene expression data and
90 genotypes have followed a similar logic [9–12]. For example,
91 Mehrabian et al. [9] integrated genotypic and phenotypic data in
92 a segregating mouse population to generate causal relationships.
93 Aten et al. [11] introduced an algorithm to estimate directionality
94 among nodes in a DAG by applying information from selected sin-
95 gle nucleotide polymorphisms (SNPs). In this study, we apply the
96 concept of granularity in a comprehensive manner and extract
97 information from a deeper granularity, here the genome, to achieve
98 a robust causal network among variables of interest in the upper
99 level of granularity, here cardiovascular risk factor phenotypes.

100 To go beyond using a sample of SNPs, which are incomplete and
101 may introduce instability in the study results [13], the method of
102 principal components is used to extract information across the
103 genome. Integration of genome information embedded in the dee-
104 per granularity and captured using principal component analysis
105 with phenotype information in the upper granularity results in a
106 robust causal network among the phenotypes, and we call this
107 algorithm Granularity Directed Acyclic Graph (GDAG).
108 We first briefly review the theory of graphical causal inference
109 and introduce the granularity framework and the GDAG algorithm.
110 The utility of this approach is introduced by application to a data
111 set including 13 cardiovascular disease risk factors and 590,020
112 SNP genotypes measured on 1596 individuals and then the esti-
113 mated structure is further interpreted. Use of information from
114 the genome level of granularity allowed us to robustly generate
115 the statistical causal network among the phenotypes. A discussion
116 of the GDAG algorithm and the results is provided.

117 1. Background

118 Assume a DAG D = (v, e) where v is a set of nodes with p ele-
119 ments which corresponds to a set of p random variables and e is
120 a set of edges which connect the nodes and shows the partial cor-
121 relation between two corresponding variables. The existence of a
122 directed edge between two nodes shows the causal relationship
123 between the corresponding variables. Assume P is a joint probabil-
124 ity distribution over the variables corresponding to the nodes in
125 DAG D = (v, e). The underlying assumption for a DAG is the Markov
126 condition over D and P [14]. D and P must satisfy the Markov con-
127 dition: every variable Yi, i e v is independent of any subset of its
128 predecessors conditioned on a set of variables, corresponds to par-
129 ents/immediate causes of node i,
130

Yi ? fYk; i&k 2 v n paðiÞgjYpaðiÞ;132132

133 where Yk occurs before Yi and parental set paðiÞ = paD(.) denotes the
134 set of parents of node i relatives to the underlying structure of DAG

135 D. For j e pa(i), we denote j? i or .

136 A topology or skeleton of a DAG is a graph without direction and
137 is obtained by identification of conditional (in)dependencies, see
138 section ‘‘Identification the Topology of Nodes” below. Identification
139 of directions is however a challenging problem due to the Markov
140 equivalent property of observational data. Analysis of data in the
141 upper granularity can identify only v-structures, two nonadjacent
142 nodes pointing inward toward a third node. A complete assess-
143 ment of directionality (i.e. statistical causal relationships) usually
144 cannot be determined from such data alone, resulting in Markov
145 equivalent DAGs [15,16]. Different DAGs on the same set of nodes
146 are Markov equivalent (ME DAGs) if and only if they have the same
147 topology and the same v-structures [17]. When the number of
148 nodes grows, the number of ME DAGs can grow super-
149 exponentially [18]. Complete determination of directionality over
150 the corresponding set v is not, however, possible in most of cases.

1512. The GDAG method

152Identifying robust and complete directionality and showing
153flow of information is a difficult task, but can be facilitated by inte-
154gration of different data types (i.e. granularities) where we know
155the direction of effect is from one granularity to the other. Assume
156we are seeking a DAG between two phenotypes Y1 and Y2. For this
157example, assume genome-wide information, related to the set (Y1,
158Y2) is captured in the variable X1. Based on the results of an analysis
159assessing conditional independencies, we find that X1 is correlated
160to Y1 and is independent of Y2 given Y1, by notation Y2\X1|Y1. Since
161genome sequence variation is a causal factor in phenotypic differ-
162ences (and not the other way around), the direction of the effect is
163from X1 to Y1, as shown in DAG A in Fig. 1. Knowing the relationship
164between X1 and Y1 helps generate the directionality between Y1
165and Y2 based on the property Y2 ? X1jY1, and the direction shows
166the flow of information is from Y1 to Y2, as shown in DAG B in
167Fig. 1. If we obtain by analysis of the data,
168then the direction of effect would be from Y2 to Y1, as shown in
169DAG C in Fig. 1, which represents a v-structure at Y1.
170To identify the direction among three variables in ME DAGs
171, we need to have at least two variables from the
172genome (i.e. a lower level of granularity, where G ? P) influencing
173Y1 and Y2 or one variable from the genome influencing Y3. By inte-
174grating multi-omics data from different granularities, we are able
175to derive causal inference that is less susceptible to confounding
176and, as a result, estimate causal networks robustly and uniquely.
177Partial information from a deeper granularity creates weak instru-
178mental variables and may result in unstable structures in the upper
179granularity [13], and we may not be able to find a genome variable
180strongly associated with every phenotype under study [19]. There-
181fore, we go beyond inclusion of a sample of SNP marker genotypes
182and extract comprehensive information across the genome by
183application of principal component analysis (PCA) to reduce the
184dimensionality of the data while retaining most of the variation
185in the data set. Since PCA is an unsupervised approach, it avoids
186increasing false discovery using the same data twice. The steps of
187the GDAG algorithm are summarized as follows:

The GDAG Algorithm: Steps to identify a Granularity Directed
Acyclic Graph (GDAG) over a set of variables of interest, Y,
using data from a deeper granularity, X

1. Extract genome information by principal component
analysis. Select the principal components responsible for a
majority of genome variation, set X.

2. Estimate a topology over sets Y and X.a

3. If a variable in set X is linked to a variable in set Y, draw an
arrow from the former to the latter.

4. Use the established directions from step 3, generate other
directions using partial correlations recorded in step 2.b

5. If there is an undirected link between Ys, use rules in [20] to
identify directionality.c

a Topology estimation is detailed in the following section.
b Presented at the beginning of this section.
c The supplementary information provides further details.
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Fig. 1. DAG A is a representation of three connected variables as well as the
knowledge about direction of the effect between two granularities where variable
X1 is from a deeper granularity. DAG B and DAG C represent direction identification
based on analysis of data.
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