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30Biomedical ontologies contain errors. Crowdsourcing, defined as taking a job traditionally performed by a
31designated agent and outsourcing it to an undefined large group of people, provides scalable access to
32humans. Therefore, the crowd has the potential overcome the limited accuracy and scalability found in
33current ontology quality assurance approaches. Crowd-based methods have identified errors in
34SNOMED CT, a large, clinical ontology, with an accuracy similar to that of experts, suggesting that crowd-
35sourcing is indeed a feasible approach for identifying ontology errors. This work uses that same crowd-
36based methodology, as well as a panel of experts, to verify a subset of the Gene Ontology (200 relation-
37ships). Experts identified 16 errors, generally in relationships referencing acids and metals. The crowd
38performed poorly in identifying those errors, with an area under the receiver operating characteristic
39curve ranging from 0.44 to 0.73, depending on the methods configuration. However, when the crowd ver-
40ified what experts considered to be easy relationships with useful definitions, they performed reasonably
41well. Notably, there are significantly fewer Google search results for Gene Ontology concepts than
42SNOMED CT concepts. This disparity may account for the difference in performance – fewer search results
43indicate a more difficult task for the worker. The number of Internet search results could serve as a
44method to assess which tasks are appropriate for the crowd. These results suggest that the crowd fits bet-
45ter as an expert assistant, helping experts with their verification by completing the easy tasks and allow-
46ing experts to focus on the difficult tasks, rather than an expert replacement.
47� 2016 Published by Elsevier Inc.
48

49

50

51 1. Introduction

52 Ontologies enable researchers to specify, in a computational
53 fashion, the entities that exist in the world, their properties, and
54 their relationships to other entities. For instance, a researcher
55 might encode in an ontology the kinds of cellular components that
56 exist, such as a nucleus or ribosome. By leveraging such an ontol-
57 ogy, a computer can recognize that a nucleus and a ribosome are,
58 in fact, both a kind of cellular component and use that relationship
59 when aggregating data. Further, ontologies allow everyone to
60 ‘‘speak the same language” by creating a shared set of terms with
61 clearly defined meanings. This property enables disparate parties
62 to share data and to integrate them readily. For example, when

63two data sources contain different information about cellular com-
64ponents (one focused on nuclei and the other on ribosomes) and
65use the same ontology to describe that information, a researcher
66is able to combine them with relative ease. These powerful proper-
67ties enable ontologies to facilitate data integration, search, decision
68support, and data annotation [1]. Today, ontologies are ubiquitous.
69Indeed, the Google Knowledge Graph contains an ontology that sup-
70ports an advanced understanding of entities on the Internet. With
71the Knowledge Graph’s ontology, Google provides additional infor-
72mation about an entity – a search for a movie also provides its star
73actors, director, budget, and so on [2]. Ontologies are latent in
74many of the technologies we encounter today. Given the important
75of ontologies, it is essential to ensure users are able to build and
76maintain them with minimal errors. In this work, we consider
77applying crowdsourcing to the task of ontology quality assurance
78– a task that is particularly challenging for biomedical ontologies.
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79 Biomedicine relies heavily on ontologies. In the clinic, they sup-
80 port electronic health records with tasks such as computerized
81 physician order entry, alerting, and decision support [3]. In the life
82 sciences, ontologies help combat the data deluge, giving research-
83 ers a tool to describe the intricate complexities of biomedicine and
84 use that encoded knowledge to organize, annotate, and sift through
85 data [4–7]. One of the most well known biomedical ontologies is
86 the Gene Ontology [8]. By describing, in a computational fashion,
87 experimental data and published literature with Gene Ontology
88 (GO) terms, researchers are able to integrate results that are
89 described with the same terms and gain insight about cellular
90 components, biological processes, and molecular functions
91 involved with a gene set of interest. One common use of these
92 annotations and terms is GO enrichment analysis, wherein sets of
93 differentially expressed genes are related, via a statistical over-
94 representation analysis, to terms in GO [9]. These returned terms
95 assist a researcher in developing hypotheses about the underlying
96 biological phenomena that differentiates cases and controls. Of
97 note, when one works with microarray data, GO enrichment anal-
98 yses are standard practice. Such studies are pervasive in the
99 literature.

100 The Gene Ontology its application is just one of the many exam-
101 ples the rapid increase in ontology use. Demonstrating this trend,
102 The National Center for Biomedical Ontology provides a repository,
103 called the Bioportal, of over 450 ontologies ranging from brain anat-
104 omy to medical procedures [10]. These ontologies vary in size from
105 hundreds of concepts to tens of thousands concepts and contain
106 even more relationships between those concepts. However, as the
107 size and complexity of ontologies continue to grow, so too does
108 the difficulty of their development andmaintenance. It becomes dif-
109 ficult for any single engineer to grasp the entirety of the ontology.
110 As a consequence of the difficulty of ontology development and
111 maintenance, ontologies, not surprisingly, contain errors. Rector
112 [11], Ceusters [12,13], Mortensen [14], and others have all identi-
113 fied systematic issues in SNOMED CT, an ontology intended to
114 describe clinical encounters, and the National Cancer Institute The-
115 saurus, a clinical ontology focused on cancer. SNOMED CT con-
116 tained doman-specific errors such as Short Sleeper S

117 ubClassOf Brain Disorder (brain disorders are not the sole
118 cause of short sleep) and Diabetes SubClassOf Disorder of
119 the Abdomen (diabetes is not a disorder of the abdominal cavity
120 but rather of the endocrine system). In this work, we refer to tech-
121 niques that identify such errors as ‘‘ontology verification”. Speak-
122 ing to the frequency of these errors, there have been entire
123 journal special issues dedicated to ontology quality verification
124 methods [15]. Unfortunately, these methods are limited in their
125 ability to catch domain-specific errors. For instance, a common
126 class of computational ontology evaluation methods is metrics-
127 based. In these methods, metrics are calculated about various char-
128 acteristics of an ontology, such as its structure (e.g., average num-
129 ber of children), its syntax (e.g., number of syntax errors), its
130 content (e.g., number of definitions) or adherence to best practices
131 (e.g., using fully defined concepts) [16–22]. These metrics serve as
132 a proxy for ontology quality. However, quality alone does not point
133 to specific errors, limiting these methods in their ability to find
134 errors such as those highlighted above (i.e., domain-specific
135 errors). As a result, the currently accepted approach for identifying
136 ontology errors is expert review. Only domain experts can inter-
137 pret the symbols in an ontology and determine whether they
138 reflect their understanding of the domain. However, the use of
139 experts is very expensive. Experts cannot verify the large ontolo-
140 gies now found in biomedicine simply by inspection. In short, there
141 is a fundamental trade-off between scalability (computational) and
142 accuracy (expert) in current ontology verification methods.
143 Crowdsourcing, the practice of taking work traditionally done
144 by one person and outsourcing it to online, anonymous crowds

145[23], is one approach to overcoming the limitations existing ontol-
146ogy quality assurance methods. Researchers have shown that
147crowdsourcing can solve certain intuitive, human-level intelli-
148gence tasks more accurately than computers. For example, crowds
149of online workers might annotate an image with properties such as
150whether it contains a ball or a cat. Performing this task computa-
151tionally remains a challenge, but humans can complete it easily.
152As crowdsourcing has grown, online platforms have emerged that
153provide users (i.e., requesters) with access to crowds (i.e., workers).
154The most common form of crowdsourcing on these platforms is
155micro-tasking. Here, many workers complete small, short tasks
156(requiring only minutes) for small rewards, including monetary
157compensation [23]. With this model, large tasks are completed
158quickly by large crowds that scale dynamically. Crowdsourcing is
159a complement to many computational techniques.
160Researchers have begun using crowdsourcing extensively
161[24–26]. One challenge that remains in crowdsourcing research is
162understanding how the crowd can contribute to solving expert-
163level, knowledge-intensive tasks. In the biomedical realm, for one
164such expert-level domain, MacLean and Heer developed a crowd-
165based methodology to extract medical entities from patient-
166authored text [27]. They used crowd workers to find and to label
167terms. They then used these labels as a training set for a statistical
168classifier. This classifier then identified relevant medical terms
169written by patients in online forums. This system was able to iden-
170tify medical terms with significantly higher accuracy in compar-
171ison to common automated medical extraction methods and thus
172showed that the crowd can work reliably on certain medical topics.
173The use of crowdsourcing in ontology engineering, a
174knowledge-intensive task, is still nascent. There has been begin-
175ning investigation into micro-task based ontology mapping and
176gaming-based ontology tagging [28–30]. The success of this work
177suggests that crowdsourcing is a candidate to solve various ontol-
178ogy engineering tasks. Building on these efforts, in our previous
179work, we have developed, refined, and applied methods to perform
180ontology verification with the crowd [31,32]. At a high level, the
181method asks crowd workers to read sentences reflecting natural
182language representations of relationships in an ontology and to
183decide whether a sentence is TRUE or FALSE based on their knowl-
184edge and provided definitions. We have already applied success-
185fully this method to verify a sample of SNOMED CT, finding a
186number of errors (More detail in Section 2) [14].
187In this work, we applied the same crowd-based verification
188methodology to another ontology, the Gene Ontology. We investi-
189gated how the crowd performed in various configurations and how
190their performance varied with task difficulty and the quality of
191concept definitions. Further, we developed a strategy to predict a
192task’s difficulty based on Google search results. In doing so, we
193make the following contributions:

1941. We replicated previous work on crowdsourced ontology
195verification.
1962. We compared and contrast our results on verifying GO with
197those of SNOMED CT.
1983. We identified the important factors required for successfully
199using crowdsourcing for ontology verification.
2004. We described a system for a hybrid between crowd-based and
201expert-based ontology verification (i.e. ‘‘group-sourcing”).
202

2032. SNOMED CT verification study summary

204The current work is based on our previous work [14]. Here, we
205summarize the results of that work. Note that the methodology is
206the same for both studies, and therefore Section 3 details the
207methodology itself.
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