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a b s t r a c t

Maturing omics technologies enable researchers to generate high dimension omics data (HDOD) rou-
tinely in translational clinical studies. In the field of oncology, The Cancer Genome Atlas (TCGA) provided
funding support to researchers to generate different types of omics data on a common set of biospeci-
mens with accompanying clinical data and has made the data available for the research community to
mine. One important application, and the focus of this manuscript, is to build predictive models for prog-
nostic outcomes based on HDOD. To complement prevailing regression-based approaches, we propose to
use an object-oriented regression (OOR) methodology to identify exemplars specified by HDOD patterns
and to assess their associations with prognostic outcome. Through computing patient’s similarities to
these exemplars, the OOR-based predictive model produces a risk estimate using a patient’s HDOD.
The primary advantages of OOR are twofold: reducing the penalty of high dimensionality and retaining
the interpretability to clinical practitioners. To illustrate its utility, we apply OOR to gene expression data
from non-small cell lung cancer patients in TCGA and build a predictive model for prognostic survivor-
ship among stage I patients, i.e., we stratify these patients by their prognostic survival risks beyond his-
tological classifications. Identification of these high-risk patients helps oncologists to develop effective
treatment protocols and post-treatment disease management plans. Using the TCGA data, the total sam-
ple is divided into training and validation data sets. After building up a predictive model in the training
set, we compute risk scores from the predictive model, and validate associations of risk scores with prog-
nostic outcome in the validation data (P-value = 0.015).

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The advent of next generation sequencing technologies [1,2]
enables clinical researchers to routinely process hundreds of
biospecimen samples collected from patients, assessing, e.g., gen-
ome wide expression levels [3], methylation levels [4], or somatic
mutations [5], referred to here as high dimensional omics data
(HDOD). Despite the usually limited available sizes of clinical sam-
ples, the numbers of observed variables on each sample can be in
the thousands or millions. The affordability of these technologies
has moved the bottleneck of clinical research from sample acquisi-
tions to data management and data analytics. While there are
numerous analytic objectives contemplated by biomedical infor-
matics researchers, one of them, the focus of this manuscript, is

to build predictive models for specific clinical outcomes, utilizing
HDOD along with other clinical variables.

Building predictive models has been a long-standing research
interest shared by quantitative researchers in several disciplines.
Computer scientists have been actively developing predictive mod-
els with large data sets from databases [6,7]. Methods include sup-
port vector machines [8], genetic algorithms [9], and many other
machine learning algorithms [10,11]. Additionally, taking full
advantage of their intimate familiarity with database technologies
and visualization tools, computer scientists have been effective in
organizing HDOD, scaling up computing power to analyze HDOD,
and presenting HDOD-derived results visually so that biomedical
researchers can interact with HDOD and can intuitively compre-
hend results. Recent successes with these applications in biomed-
ical research partially contribute to the growth of bioinformatics.

Building predictive models has been a long-standing interest for
statisticians. A literature review is not attempted here. It suffices to
note several major milestones in this area. Given the nature of
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predicting an outcome with multiple variables, regression-based
predictive models are commonly built, and most are special cases
within generalized linear models (GLM) [12]. Relaxing the para-
metric assumption, Hastie and Tibshirani described a generalized
additive model (GAM), synthesizing results from decades of
research on nonparametric regression methods [13]. In recent
years, statisticians have been developing penalized likelihood tech-
niques to automate the covariate selections from HDOD [14],
including LASSO [15,16], GBM [17], Elastic-Net [18], Ridge regres-
sion [19] and Radom Forests [20]. These methods are commonly
used tools for analyzing HDOD in translational research.

While there is some crossbreeding of methods between com-
puter sciences and statistics, one fundamental difference in our
opinion is that computer scientists often explore patterns with
multiple variables from a systemic perspective, while statisticians
tend to identify a few covariates following the parsimony principle.
A major challenge facing statisticians is how to control the overly
inflated false positive error rate in selecting predictors from HDOD,
so that discoveries are reproducible in independent samples. In
contrast, computer scientists or bioinformaticians, with primary
interest in patterns of HDOD, often desire to quantify observed pat-
terns in a robust manner, in hope that discovered patterns are
reproducible on independent data sets.

To frame the ‘‘big picture”, consider what would be a clinician’s
intuition in dealing with complex medical information. Clinicians
typically gather multifaceted information from medical records,
from physical examinations, and from diagnostic laboratory tests,
a version of HDOD, and then make a clinical judgement based on
the evidence plus their experiences of past cases. Mentally, an
experienced clinician would compare the new patient with previ-
ously treated patients or those typical cases in textbooks or in
literature, and would reduce the mental comparison to an intuitive
clinical judgement with a sample size of one. In essence, the clini-
cian’s assessment is holistic by comparing individual’s HDOD with
those HDOD profiles of known subjects, like exemplars.

Being motivated by this clinician’s intuition, we propose a
hybrid approach of integrating data pattern discovery and regres-
sion analytics, to retain desired features of both analytic
approaches. This approach has two steps. At the first step, the
goal is to identify a group of ‘‘exemplars” that are representative
of subjects’ HDOD patterns, typically observed through clustering
analysis of unsupervised learning [14,21,22]. To have cluster pat-
terns represented, one could choose centroids of clusters as
exemplars. To represent those samples under-represented by
clusters, one could choose singletons to be exemplars. In essence,
a HDOD pattern characterizes an exemplar. The number of exem-
plars (q) is generally smaller than the sample size (n), unless
exemplars are derived externally (see discussion below). With
reference to each exemplar, one can compute a similarity mea-
surement with each subject, resulting in a matrix of similarity
measurements with the dimension (n � q). Typically, p� n > q.
Effectively, this step transforms high dimension and sparse HDOD
(n � p) into a ‘‘dense data matrix” (n � q). Then, at the second
step, we use penalized likelihood methods to select those exem-
plars that are predictive of the outcome. Because of the substan-
tially reduced dimensionality from p to q, the penalized
likelihood can readily picks up informative exemplars, at much
reduced penalty. The dual step procedure relies on exemplars
from ‘‘unsupervised learning” and then selects informative exem-
plars with their associations with outcome via ‘‘supervised learn-
ing”. Because of regressing outcome on exemplar-specific
similarities, this method is referred to as ‘‘object-oriented regres-
sion” or OOR for short. In contrast, most of regression-based
methods mentioned above are known as covariate-specific
regression methods (CSR).

2. Methodology

2.1. Motivation

The Statement of Problem: Consider a sample of n subjects
(i = 1, 2, . . . , n) in a clinical follow-up database. On each ith subject,
we observe a set of high dimensional and sparse covariates,
denoted as Xi = (xi1, xi2, . . . , xip), where the number of covariates is
typically much greater than the sample size (p� n), typical of
HDOD. Also observed on each ith subject is time-to-event outcome
variable of interest Yi = (di, ti), in which binary indicator di is for,
e.g., alive or death, at the observed time ti. The likelihood of all
observed data may be written as

LðYi;Xi;8iÞ ¼ �
X
i

log f ðYijXiÞ �
X
i

log f ðXiÞ; ð1Þ

where the summation is over n subjects, f(Yi|Xi) the conditional den-
sity of Yi given covariates Xi, and f(Xi) is the multivariate distribution
of covariates [23]. To capture association of the time-to-event out-
come with covariates, it is a common practice to model a hazard
function [24], which may be written as

kðtjXi; hÞ ¼ k0ðtÞ exp½hðXi; hÞ�; ð2Þ
where k0ðtÞ is the baseline hazard function independent of covari-
ates, and h(Xi, h) is an arbitrary function indexed by a vector of
unknown parameters h to be estimated from a data set. Correspond-
ingly, the distribution function f(Yi|Xi) is specified by the hazard
function via

f ðYijXiÞ ¼ ½kðtijXi; hÞ�di exp �
Z ti

0
kðujXi; hÞdu

� �
: ð3Þ

The analytic objective is to establish the outcome (Yi) associa-
tion with covariates (Xi) via modeling the arbitrary function h(Xi, h).

The Representer Theorem: When the covariate function is
unknown and is left unspecified, Kimeldorf and Wahba [25] have
shown that given the observed samples (X1, X2, . . . , Xn), the above
arbitrary function h(Xi, h) in Eq. (2) can be generally represented by

hðX; hÞ ¼
Xn
k¼1

hkKðX;XkÞ; ð4Þ

where hk is a sample-specific and unknown parameter, and K(X, Xi)
is known as the kernel function and needs to be semi-positive def-
inite [25]. One class of kernel function is the similarity measure that
quantifies the similarity of X with Xk. For an observation X identical
to Xk, the corresponding term is hkK(X, Xk) = hk. If X is completely dif-
ferent from Xk, hkK(X, Xk) = 0. Further, if Xk and Xk0 are identical or
nearly identical, corresponding terms can be merged as
hkKðX;XkÞ þ hk0KðX;Xk0 Þ � ðhk þ hk0 ÞKðX;XkÞ ¼ akKðX;XkÞ. Lastly, one
expects that the coefficient hk, quantifying outcome association
with similarity measure K(X, Xk) with the kth individual, is likely
to equal zero, if the covariate profile of the kth individual is not
associated with the corresponding outcome. Zhu and Hastie used
some of these observations to describe an import vector machine
approach by grouping some K(X, Xk) terms [26].

The Representer theorem, together with above observations,
forms the theoretical foundation for us to propose OOR by model-
ing this arbitrary function via

hðXi;a; b’sÞ ¼ aþ
Xq
k¼1

bkskðXiÞ; ð5Þ

where sk(Xi) = K(Xi, Zk) is the similarity measurement of X with the
kth unique HDOD Zk, and (a, bk) are unknown regression coeffi-
cients to be estimated. Formally, HDOD vector Zk represents a pat-
tern of HDOD or HDOD profile, and is referred to as an exemplar.
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