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26The identification of gene–phenotype relationships is very important for the treatment of human
27diseases. Studies have shown that genes causing the same or similar phenotypes tend to interact with
28each other in a protein–protein interaction (PPI) network. Thus, many identification methods based on
29the PPI network model have achieved good results. However, in the PPI network, some interactions
30between the proteins encoded by candidate gene and the proteins encoded by known disease genes
31are very weak. Therefore, some studies have combined the PPI network with other genomic information
32and reported good predictive performances. However, we believe that the results could be further
33improved. In this paper, we propose a new method that uses the semantic similarity between the candi-
34date gene and known disease genes to set the initial probability vector of a random walk with a restart
35algorithm in a human PPI network. The effectiveness of our method was demonstrated by leave-one-out
36cross-validation, and the experimental results indicated that our method outperformed other methods.
37Additionally, our method can predict new causative genes of multifactor diseases, including
38Parkinson’s disease, breast cancer and obesity. The top predictions were good and consistent with the
39findings in the literature, which further illustrates the effectiveness of our method.
40� 2015 Published by Elsevier Inc.
41

42

43

44 1. Introduction

45 Because many diseases, such as cancer, diabetes, and
46 cardiovascular diseases, result from gene mutations, exploring
47 the relationships between diseases and their causative genes has
48 become an important topic in contemporary systems biology.
49 These gene mutation-caused diseases are very common in devel-
50 oped countries and are becoming increasingly common in develop-
51 ing countries [1].
52 Linkage analyses and association studies have been proposed to
53 identify disease genes [2–4]. However, the efforts of these methods
54 result in genomic intervals of 0.5–10 cM that are composed of hun-
55 dreds of genes [5,6]. Whether these genes are disease-causing
56 requires further investigation.
57 In recent years, with the rapid accumulation of different types
58 of genomic data, many calculation methods for prioritizing disease
59 genes have been proposed. One remarkable advantage of these cal-
60 culation methods is the reduction in manpower and material
61 resources. Concretely, most of these methods are based on similar-
62 ities between the genomic data of known disease genes and the

63genomic data of the candidate gene. The genomic data include
64sequence-based features [7,8], gene ontology (GO) annotation
65information [9,10], expression patterns [11–13], and protein inter-
66action data [14,15]. In most cases, multiple sources of genomic
67data are combined to find causal genes, e.g., the combinations of
68GO annotation information with protein interaction data [16], GO
69annotation information with sequence-based features [17], and
70metabolic pathway data with protein interaction data [18].
71Investigation of the interactions between the proteins that are
72encoded by genes in the human PPI network has become one of
73the primary and most powerful approaches for elucidating the
74molecular mechanisms that underlie complex diseases [19–21].
75Such exploration has often been performed by comparing the net-
76work topology similarities of the nodes in the PPI network. There
77are many methods for measuring topological similarity, including
78calculating the number of common neighbors between two net-
79work nodes and calculating the distance between two network
80nodes. Due to incomplete data about the PPI network, some inter-
81actions between the proteins encoded by candidate gene and the
82proteins encoded by known disease genes are very weak. Thus,
83some candidate genes cannot be well identified. To achieve better
84prediction results, some studies have combined the PPI network
85with phenotype similarity information and reported good perfor-
86mances. However, we believe that the results could be further
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87 improved. In biological data resources, large amounts of data
88 describe the molecular function of genes or the biological pro-
89 cesses in which the genes are involved. These data form the seman-
90 tic information of a gene. If a candidate gene and a disease gene
91 share a high level of semantic similarity, we can compensate for
92 the weak interaction between the genes in the PPI network by add-
93 ing the semantic similarity. Some studies have shown that GO
94 annotation information, which is used to predict disease genes
95 [22], is a very effective semantic resource. Based on these two
96 types of data sources, i.e., protein interaction data and GO annota-
97 tion information, this paper proposes a new method for inferring
98 gene–phenotype relationships. We use the semantic similarity
99 value between the candidate gene and known disease genes to

100 set the initial probability vector of the random walk with restart
101 (RWR) algorithm and apply this algorithm to the PPI network.
102 When the final walk reaches a stable state, we predict new disease
103 genes according to the candidate genes’ rankings in the vector. We
104 used leave-one-out cross-validation to demonstrate the effective-
105 ness of our method. Compared with other methods, our method
106 achieved better performance. Additionally, new causative genes
107 of multifactor diseases, including Parkinson’s disease, breast can-
108 cer, and obesity, are predicted with our method. The top predic-
109 tions were good and consistent with the reports in the literature,
110 which further illustrates the validity of our method.

111 2. Materials and methods

112 2.1. Data source

113 Gene ontology data (released in October 2013) and a human
114 gene annotation dataset (released in October 2013) were from
115 the Gene Ontology database [23]. The GO consists of three struc-
116 tured ontologies, i.e., biological process (BP), molecular function
117 (MF), and cellular component (CC). The GO data contains 25,571
118 BP, 9661 MF, and 3386 CC terms. The gene annotation dataset con-
119 tained 383,316 annotations of 18,911 genes.
120 In this paper, PPI data were downloaded from the Human
121 Protein Reference Database (HPRD). All of the information in the
122 HPRD has been manually extracted from the literature by expert
123 biologists who have read, interpreted, and analyzed the published
124 data.
125 Disease–gene association data were obtained from the Online
126 Mendelian Inheritance in Man (OMIM) database [24].

127 2.2. Summaries of the RWR and HRSS algorithms

128 The RWR is a sorting algorithm [14] that simulates a random
129 walker that either starts from a seed node, or from a set of seed
130 nodes, and moves to its direct neighbors randomly at each step.
131 Finally, based on the probability of the random walker reaching a
132 specific node, we ranked all of the nodes in the graph. We used P0

133 to represent the initial probability vector, and Ps is a vector that rep-
134 resents the probability of the random walker reaching all nodes on
135 the graph at step s. The probability vector at step s + 1 is given by
136

Psþ1 ¼ ð1� dÞMPs þ dP0 ð1Þ138138

139 The row-normalized adjacency matrix of the graph is repre-
140 sented by parameter M.
141 The parameter d 2 ð0;1Þ is the restart probability. At each step,
142 the random walker can return to the seed nodes with probability d.
143 After some steps, the vector Psþ1 will reach a steady state. This
144 steady state is obtained by performing the iteration until the abso-
145 lute value of the difference between Ps and Psþ1 falls below 10�6.
146

jPsþ1 � Psj < 10�6 ð2Þ148148

149This paper used the HRSS algorithm (Fig. 1) that was developed
150by Wu [25] to measure the semantic similarity.
151The information content (IC) is defined by Eq. (3),
152

ICðcÞ ¼ � log pðcÞ ð3Þ 154154

155The probability of the occurrence of the term c in a specific cor-
156pus is represented by component pðcÞ.
157The IC-based distance between the two terms u and v is defined
158in Eq. (4), where v is a descendant of u.
159

distICðu; vÞ ¼ ICðvÞ � ICðuÞ ¼ log pðuÞ � log pðvÞ ð4Þ 161161

162Then, the IC-based specificity of the most informative common
163ancestor (MICA) of any two terms termi and termj is
164

aIC ¼ distICðroot;MICAÞ ¼ � log pðMICAÞ ð5Þ 166166

167The distIC between a term and the most informative leaf nodes
168(MIL) descending from the term refers to the generality of a term.
169Component b represents the average of the generality values of
170termi and termj.
171

bIC ¼
distICðtermi;MILiÞ þ distICðtermj;MILjÞ

2
ð6Þ

173173

174The most informative leaf nodes of termi and termj are repre-
175sented by MILi and MILj, respectively.
176

HRSSðtermi; termjÞ ¼
1

1þ c
aIC

aIC þ bIC
ð7Þ

178178

179where c is defined as follows:
180

c ¼ distðMICA;termiÞ þ distðMICA;termjÞ ð8Þ 182182

183Let g1 and g2 be two genes of interest and tg1 and tg2 the sets of all
184of the GO terms assigned to gene g1 and g2, respectively.
185

HRSSGO
MAXðg1; g2Þ ¼max

goi2tg1
goj2tg2

ðHRSSðgoi; gojÞÞ ð9Þ
187187

Fig. 1. A schematic illustration of the HRSS algorithm.
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