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26Based on the latest statistics on trends in cancer incidence and mortality worldwide, cancer burden is
27growing at an alarming pace. Many anticancer drugs have been proved effective against cancer cells as
28well as toxic to human tissues, which prevents sufficient doses from being administered to obtain a com-
29plete cure. In this paper we build an optimal control model to optimize the scheduling problem along one
30cycle of chemotherapy treatment using a single anticancer drug etoposide (VP-16). In the model, three
31mathematic models are adopted to mimic physiological response of body under chemotherapy: (i)
32Pharmacokinetic model of anticancer drug; (ii) A two-compartment tumor growth dynamic model under
33the influence of cell-cycle-specific anticancer drugs; and (iii) A semi-mechanistic model for myelosup-
34pression. In this new integrated model clinically relevant objectives are proposed to gain a trade-off
35between efficacy and toxicity. Simulation results of clinical protocols are consistent with real-life clinical
36data. Furthermore, we find a new optimal drug regimen which can improve the efficacy without the risk
37of severe toxicity.
38� 2015 Published by Elsevier Inc.
39

40

41

42 1. Introduction

43 Cancer, also known as malignant tumor, is a group of diseases
44 involving abnormal cell growth with the potential to invade or
45 spread to other parts of the body. According to ‘World Cancer
46 Report 2014’ released by the International Agency for Research
47 on Cancer (IARC), in 2012 the worldwide burden of cancer rose
48 to an estimated 14 million new cases per year, and the figure is
49 expected to rise to 22 million annually within the next two dec-
50 ades. Over the same period, annual cancer deaths are predicted
51 to rise from an estimated 8.2 million to 13 million. As pointed
52 out by the Director of IARC, Dr. Christopher, ‘‘the rise of cancer
53 worldwide is a major obstacle to human development and
54 well-being. These new figures and projections send a strong signal
55 that immediate action is needed to confront this human disaster,
56 which touches every community worldwide, without exception’’.
57 Surgery, chemotherapy, radiotherapy, hormone therapy and
58 immunotherapy are the primary treatment options for cancer.
59 Since cancer cells can invade surrounding tissues and migrate to
60 the other parts of the body, chemotherapy is commonly employed

61as a systemic treatment by clinicians. Combining with surgery,
62chemotherapy has been proven beneficial in many different types
63of cancer such as breast cancer, colorectal cancer, pancreatic can-
64cer, osteogenic sarcoma, testicular cancer, ovarian cancer, and cer-
65tain lung cancers. However, the effectiveness of chemotherapy is
66often limited by toxicity to other tissues in the body due to the
67interaction of the drug with normal cells. Clinicians need to put
68forward a drug regimen to balance the treatment efficacy with
69the toxic side effects.
70Randomized clinical trials are the standard method for the eval-
71uation of efficacy and toxicity of chemotherapy treatment plans.
72The current standard of practice of treatment is based on empirical
73evidence gathered from preclinical and clinical trials carried out
74during the drug development process. However, given the limited
75human and financial resources for clinical trials, optimal protocols
76cannot be determined empirically. To this end, mathematical mod-
77eling provides a low-cost method for evaluating different strategies
78more efficiently by describing the quantitative relations among
79several factors [1].
80The optimal control model (OCM) constructed by Martin et al.
81[1,2] has been extensively used by the studies on chemotherapy
82treatment optimization problem. Martin et al. [1,2] use the
83Gompertz equation to describe tumor cell populations. Maximum
84tolerated dose (MTD) and area under concentration (AUC) are indi-
85cators of toxicity. A multiple characteristic time (MCT) constraint is
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86 used to ensure tumor population decrease at, or faster than, a given
87 rate in a specified time interval. More recently, Liang et al. [3–5]
88 modified the metabolism process of cumulative drug toxicity by
89 introducing a new parameter representing the elimination rate of
90 drug toxicity and applied several algorithms to the chemotherapy
91 scheduling problem.
92 The Gompertz model is capable of capturing clinically observed
93 tumor dynamics, but it cannot capture information regarding the
94 progression of cells through the individual phases of the
95 cell-cycle. Compartment models are developed to gain more
96 insight into cell behavior [6]. Based on the previous research,
97 Dua et al. [7] incorporate the cycle-specific chemotherapy effect
98 mechanism into the optimal control model (OCM), in which they
99 present two typical optimal control formulations that minimize

100 the final tumor population subject to the constraints on toxicity
101 and drug resistance. A more complex description of the system
102 incorporates patient-specific parameters into their cell population
103 growth model, where an approximately optimal treatment plan is
104 found by applying simulated annealing algorithm [8].
105 Efforts have been made to shed light on interaction between
106 tumor and immune system. Villasana et al. [9,10] formulated the
107 action of a cycle-specific cytotoxic drug with the goal of maximiz-
108 ing cell kill fraction and minimizing normal cell killing and
109 designed a heuristic algorithm to find optimal delivery schedules.
110 Furthermore, they incorporated a cytostatic drug which arrest cells
111 in a phase of their cycle. The problem of designing efficient com-
112 bined chemotherapies is formulated as an optimal control problem
113 and tackled using three heuristic algorithms for real-parameter
114 optimization, namely, covariance matrix adaptation evolution
115 strategy, differential evolution, and particle swarm pattern search
116 method [11,12].
117 Research in the last five decades has led to the development of
118 Medical Decision Support (MDS) applications using a variety of
119 modeling techniques, for a diverse range of medical decision prob-
120 lems, such as diagnostic decision support [13] and management of
121 hospital resources [14,15]. In this paper we focus on cancer
122 chemotherapy and dose schedule optimization using mathemati-
123 cal methods.
124 Although extensive efforts have been invested in the theoretical
125 investigation of chemotherapy control methods, we find several
126 limitations to practical application. In most previous studies, the
127 toxicity of a treatment is measured both by maximum tolerated
128 dose and maximum drug exposure expressed as area under curve
129 (AUC). It relies on the assumption that today’s chemotherapy treat-
130 ments achieve the maximum efficacy. However, we find this
131 approach clinically unrealistic. In practical chemotherapy con-
132 stantly suffers from the inability to control the efficacy-toxicity
133 balance. More importantly, AUC as an indicator of toxicity is argu-
134 able, since it induced unreasonable timing for the first treatment in
135 the optimization problem in Martin et al.’s work [1,2]. Liang et al.
136 [3–5] attempted to fix this by introducing a new parameter. While
137 Agur et al. [9] tried to model the interaction of drugs with normal
138 cells. Nevertheless, those methods cannot be applied directly
139 because parameters in their models are clinically unavailable. In
140 order to reduce the gap between theoretical investigation and
141 medical practice, we propose a more practical approach by inte-
142 grating a physiology-based model, i.e., the semi-mechanistic
143 model for myelosuppression proposed by Friberg et al. [16],
144 into the chemotherapy dose scheduling problem. This semi-
145 mechanistic model effectively captures the main physiological pro-
146 cesses and predicts the whole time course of leukopenia. Based on
147 this new model we are able to find optimal drug regimen, and
148 identify new strategies to split the total drug dose so that toxicity
149 will be reduced without compromising efficacy.
150 The rest of the paper is organized as follows: Section 2 gives a
151 brief introduction on biomedical background and describes the

152pharmacokinetic model of VP-16, tumor growth dynamic model
153and chemotherapy-induced myelosuppression model in detail.
154Section 3 is the simulation results of different clinical protocols
155and Section 4 works on optimizing dose regimens in cancer
156chemotherapy. Conclusions and discussions are presented in
157Section 5.

1582. Problem formulation

1592.1. Biomedical background

160In cancer treatment, measurement of tumor growth is neces-
161sary for preclinical and clinical assessment of efficacy. To model
162untreated tumor growth, exponential, Gompertz and logistic
163growth models are commonly used but cell-cycle models provide
164more insight into cell behavior. Cell cycle is a chain of phases that
165both normal and cancer cells undergo from their birth to death. In
166general, the cycle comprises of five stages which are G0, G1, S, G2
167and M. G0 stands for resting phase, representing cell is quiescent.
168Cycling cell has four phases, including the gap period (G1), the syn-
169thetic period (S), the second gap period (G2), and mitosis (M).
170Usually, cancer drugs work by damaging the RNA or DNA to halt
171division. Anticancer drugs that are able to kill all cancer cells are
172called cell-cycle non-specific; while drugs that only kill cancer cells
173when they are dividing are called cell-cycle specific.
174Since anticancer drugs attack both normal and cancer cells,
175their usage often lead to severe side effects. Side effects of anti-
176cancer chemotherapy include hematological toxicity, nausea, vom-
177iting, diarrhea, fatigue, alopecia, and cardiac, neurological, and
178renal toxicity. The main toxicity of most anticancer drugs is hema-
179tological. Thus, the ability to anticipate hematological toxicity
180could be of great value for optimizing treatment and predicting
181complication for patients who undergo prolonged periods of
182myelosuppression [17].
183Etoposide (VP-16) is a cell-cycle specific anticancer drug that
184has been widely used in chemotherapy treating childhood leuke-
185mia, testicular tumors, Hodgkin’s disease, large cell lymphomas
186and small cell lung cancer (SCLC). The activity of VP-16 is
187dose- and schedule-dependent, and efficacy might be improved
188markedly with repeated drug administration. However, myelosup-
189pression as the dose-limiting toxicity for VP-16 should be taken
190into account when planning the chemotherapy regimen. The
191chemotherapy treatment is given in cycles, attacking cancer cells
192at their most sensitive periods, and allowing normal body cells
193time to recover [18].

1942.2. PK–PD model

195Cancer progression in a patient undergoing chemotherapy is a
196very complex process. Engineers have considered the development
197of drug administration schedules for simulated cancer patients
198constrained by pharmacokinetic (PK) and pharmacodynamic (PD)
199models to meet the challenge [19] (see Fig. 1).

2002.2.1. Pharmacokinetic model
201Pharmacokinetic models can include the distribution of drugs
202by the circulatory system, the elimination of drug, and the amount
203of drug present at the site of action. Systems of linear ordinary dif-
204ferential equations (ODEs) are commonly used to describe the
205dynamic relationship between the kinetic behavior of the drug
206administered and corresponding concentration. Regarding VP-16,
207a two-compartment PK model (as in Fig. 2) has the best fit [20].
208The mathematical models are as follow:
209

_Xc ¼ K21 � Xp � ðK12 þ K10Þ � Xc þ X0 ð1Þ 211211
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