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27Evaluation of survival models to predict cancer patient prognosis is one of the most important areas of
28emphasis in cancer research. A binary classification approach has difficulty directly predicting survival
29due to the characteristics of censored observations and the fact that the predictive power depends on
30the threshold used to set two classes. In contrast, the traditional Cox regression approach has some draw-
31backs in the sense that it does not allow for the identification of interactions between genomic features,
32which could have key roles associated with cancer prognosis. In addition, data integration is regarded as
33one of the important issues in improving the predictive power of survival models since cancer could be
34caused by multiple alterations through meta-dimensional genomic data including genome, epigenome,
35transcriptome, and proteome. Here we have proposed a new integrative framework designed to perform
36these three functions simultaneously: (1) predicting censored survival data; (2) integrating
37meta-dimensional omics data; (3) identifying interactions within/between meta-dimensional genomic
38features associated with survival. In order to predict censored survival time, martingale residuals were
39calculated as a new continuous outcome and a new fitness function used by the grammatical evolution
40neural network (GENN) based on mean absolute difference of martingale residuals was implemented. To
41test the utility of the proposed framework, a simulation study was conducted, followed by an analysis of
42meta-dimensional omics data including copy number, gene expression, DNA methylation, and protein
43expression data in breast cancer retrieved from The Cancer Genome Atlas (TCGA). On the basis of the
44results from breast cancer dataset, we were able to identify interactions not only within a single dimen-
45sion of genomic data but also between meta-dimensional omics data that are associated with survival.
46Notably, the predictive power of our best meta-dimensional model was 73% which outperformed all of
47the other models conducted based on a single dimension of genomic data. Breast cancer is an extremely
48heterogeneous disease and the high levels of genomic diversity within/between breast tumors could
49affect the risk of therapeutic responses and disease progression. Thus, identifying interactions within/be-
50tween meta-dimensional omics data associated with survival in breast cancer is expected to deliver
51direction for improved meta-dimensional prognostic biomarkers and therapeutic targets.
52� 2015 Published by Elsevier Inc.
53

54

55

56 1. Introduction

57 Translational bioinformatics is one of the most prominent fields
58 that efficiently translate genomic and biomedical data into clinical
59 knowledge for application [3,4,41]. In particular, translational
60 bioinformatics has been playing important roles in cancer research
61 due to the tumor heterogeneity [4]. For example, recent
62 standard-of-care for breast cancer or non-small cell lung cancer
63 includes quantitating panels of gene expression such as Oncotype
64 DX, developed by Genomic Health, or sequencing of genes such

65as EGFR, respectively, in order to provide therapeutic knowledge
66for new subtypes of cancer patients [4]. One of the most exciting
67problems in translational bioinformatics is to predict clinical out-
68comes using molecular datasets such as somatic mutation, copy
69number or gene expression data for better diagnostics, prognostics,
70and further therapeutics [3]. Among problems of predicting clinical
71outcomes, there is an increasing difficulty in predicting prognosis
72and therapeutic response prediction [31].
73Evaluating survival models is one of the most important atten-
74tions in the development of cancer prognostic models, especially
75based on genomic profiles. One of the common approaches is that
76patients can be divided into two groups, such as high-risk survival
77and low-risk survival group, according to a survival-time
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78 threshold, and then a binary classification algorithm can be applied
79 to predict the survival group for each individual patient in a test
80 dataset [24,26,27,52,57]. This approach has an advantage of pro-
81 viding natural performance metrics from two by two contingency
82 tables, along with positive and negative predictive values, to
83 enable unambiguous assessments for survival prediction.
84 However, this approach has a few limitations for predicting sur-
85 vival in cancer. First, it is not easy to take the censored survival
86 information into consideration when building a model. In addition,
87 the performance of binary classification depends on the threshold
88 selected based on patient’s survival information, which was used
89 to define the two survival groups [14]. Alternatively, many studies
90 have been using Cox proportional hazards models for cancer prog-
91 nosis [10]. However, the final model from Cox regression
92 approaches is an additive model. Thus, it is difficult to capture
93 non-linear interactions between genomic features, which might
94 have important roles associated with survival [16]. Even though
95 many studies have shown an association between gene expression
96 data and patient survival using Cox regression approaches
97 [2,15,53], gene expression as a single dimensional genomic data
98 type may not be enough to fully predict survival because cancer
99 could be caused by multiple alterations through

100 meta-dimensional genomic data including genome, epigenome,
101 transcriptome, and proteome [17].
102 Many clinical data and meta-dimensional omics data have been
103 generated from large-scale initiatives such as the International
104 Cancer Genome Consortium (ICGC) or The Cancer Genome Atlas
105 (TCGA). The explosion of these unprecedented dataset has pro-
106 vided many opportunities to examine the complex genetic archi-
107 tecture of several cancers and improve the diagnosis, treatment,
108 and ultimately prevention of cancer [21,35,45–47]. Despite these
109 efforts, it is crucial to develop a novel data integration method to
110 better predict cancer clinical outcome, further exploring a global
111 view on the interactions within/between meta-dimensional geno-
112 mic data [23,24,27,28,39,44,56].
113 Previously, we proposed many methodological frameworks that
114 predict clinical outcomes by integrating multi-omics data
115 [23,24,27,28]. However, these binary classification approaches have
116 difficulties to directly predict survival data due to the problems of
117 setting threshold and the characteristics of censored observations.
118 In the present study, we propose a novel framework designed to
119 perform three functions simultaneously: (1) predicting censored
120 survival data; (2) integrating meta-dimensional omics data; (3)
121 identifying interactions within/between meta-dimensional geno-
122 mic features associated with survival outcome. In order to demon-
123 strate the utility of the proposed framework, we applied the
124 framework on a simulation dataset followed by the breast cancer
125 data from TCGA. Breast cancer is an extremely heterogeneous dis-
126 ease [22]. High degree of diversity within/between breast tumors
127 could affect the risk of therapeutic responses and disease progres-
128 sion [36]. In addition, most breast cancer studies based on molecu-
129 lar data have mainly focused on one- or two-dimensions of genomic
130 data, mostly copy number alteration or gene expression profiles
131 [12,42,43]. Thus, identifying interactions within/between
132 meta-dimensional omics data associated with survival outcome in
133 breast cancer is expected to deliver direction for improved
134 meta-dimensional prognostic biomarkers and therapeutic targets.

135 2. Materials and methods

136 2.1. Data

137 Normalized and preprocessed multi-omics datasets in breast
138 cancer were downloaded from TCGA data matrix (http://tcga-
139 data.nci.nih.gov/tcga/) and cBio Cancer Genomics Portal (http://
140 www.cbioportal.org/public-portal/) (Table 1). Four different

141genomic data types were used for this study to represent each
142dimension of genomic data; CNA as genome dimension, methyla-
143tion as epigenome dimension, gene expression as transcriptome
144dimension, and protein data as proteome dimension. Each genomic
145dataset was retrieved as a gene-based feature in order to better
146interpret the results. CNA data was obtained from the cBio Portal
147in order to retrieve the significantly altered copy number regions
148across a set of cancer patients using the GISTIC method [7]. For
149CNA data, 473 genes with log2 copy number value were extracted
150from 62 significant altered regions. DNA methylation data was also
151retrieved as a gene-level feature from the TCGA data matrix by
152choosing the least correlated with gene expression when genes
153were mapped with multiple methylation probes, from 485,577
154methylation probes to 19,943 genes. The beta-value of human
155methylation 450 BeadChip was used for the elements of methyla-
156tion data. Gene expression data from RNA-seq consisted of 20,502
157unique gene symbols with upper quartile normalized RSEM count
158estimates [30]. Protein or phosphoprotein levels measured by the
159reverse phase protein array (RPPA) were retrieved from the cBio
160Portal [50]. Protein data contains 131 proteins after removing 11
161proteins due to the missing data. Patients that have overlap among
162four types of omics data with available survival and age informa-
163tion, 476 patients, were used for this study.

1642.2. Analysis Tool for Heritable and Environmental Network
165Associations (ATHENA)

166ATHENA was developed to uncover the meta-dimensional mod-
167els that examine the genetic etiology of complex diseases such as
168cancer. Thus, ATHENA provides three key functions: (1) performing
169feature selection from categorical or continuous independent vari-
170ables; (2) modeling single variable and/or interaction effects to
171predict categorical or continuous clinical outcomes; (3) annotating
172the candidate models for the interpretation in translational bioin-
173formatics [19,24,51]. ATHENA contains several subcomponents:
174preprocessing, modeling, and an evolutionary-algorithm based
175machine learning technique at its core (Fig. 1). The current imple-
176mentation of ATHENA contains two different
177evolutionary-algorithm modeling methods, which are
178Grammatical Evolution Neural Networks (GENN) and
179Grammatical Evolution Symbolic Regression (GESR). We have
180extended ATHENA to perform integrative analysis using
181meta-dimensional omics data to identify models that underlie
182the multi-layered architecture of cancer. A schematic overview of
183the ATHENA was shown in Fig. 1. ATHENA can simultaneously ana-
184lyze meta-dimensional genomic data such as CNA, methylation,
185gene expression, and protein expression data to build the
186meta-dimensional models of complex disease. For the further anal-
187ysis, we used GENN as the modeling component.

1882.3. Grammatical Evolution Neural Networks (GENN)

189Even though many computational methods such as multifactor
190dimensionality reduction (MDR) have been proposed to discover
191interactions between genomic features [9,38], many of them

Table 1
TCGA breast cancer data types used for meta-dimensional analysis.

Data type Platform # Features

CNA Affymetrix SNP 6 473 genes
Methylation Infinium humanmethylation450

BeadChip
19,943
genes

Gene expression Illumina GA RNA-seq 20,502
genes

Protein
expression

Reverse phase protein array (RPPA) 131 proteins
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