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Automated feature extraction from medical images is an important task in imaging informatics. We
describe a graph-based technique for automatically identifying vascular substructures within a vascular
tree segmentation. We illustrate our technique using vascular segmentations from computed tomogra-
phy pulmonary angiography images. The segmentations were acquired in a semi-automated fashion
using existing segmentation tools. A 3D parallel thinning algorithm was used to generate the vascular
skeleton and then graph-based techniques were used to transform the skeleton to a directed graph with
bifurcations and endpoints as nodes in the graph. Machine-learning classifiers were used to automatically
prune false vascular structures from the directed graph. Semantic labeling of portions of the graph with
pulmonary anatomy (pulmonary trunk and left and right pulmonary arteries) was achieved with high
accuracy (percent correct > 0.97). Least-squares cubic splines of the centerline paths between nodes
were computed and were used to extract morphological features of the vascular tree. The graphs were
used to automatically obtain diameter measurements that had high correlation (r > 0.77) with manual

measurements made from the same arteries.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An important imaging informatics task is to help medical imag-
ing evolve from a primarily qualitative to a primarily quantitative
discipline. One aspect of this is extracting quantitative and com-
putable features from the image. Being able to do this in a (nearly)
automated method would allow prospective collection of quantita-
tive features with minimal impact on current workflow and the
retrospective processing of large numbers of cases archived in
institutional PACS. While some quantitative feature extraction
can be done directly on the original image, typically, extraction
involves identifying subregions of the image that constitute partic-
ular objects of interest within the image. Sub-images may be geo-
metric subunits of the image or collections of connected voxels
that represent an object or feature of interest. A segmentation of
a medical image is a binary labeling of the pixels (2D) or voxels
(3D) that constitute the image, where each voxel that is part of
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the object of interest is given one label (e.g. 1) and all other voxels
are given another label (e.g. 0).

After segmentation, the labeled voxels are simply an unordered
list, and, depending on the complexity of the segmented object,
may need to be ordered into substructures in order to facilitate
processing or reasoning. In this paper we present a process for
ordering a vascular skeleton into the constituent parts of the vas-
cular tree so that quantitative, computable features can be
extracted from the original medical images. Our method uses
graph-based techniques to recognize critical features within the
skeleton (bifurcations, endpoints, and centerlines). Once the skele-
tal tree structure is recognized, each voxel within the segmenta-
tion is mapped to the appropriate graph edge, facilitating
characterization of morphological features of specific vascular seg-
ments. For this paper we focus on 3D (volumetric) vascular images
and how to structure the original unordered list of prior segmented
voxels so that vascular-specific features, such as bifurcation angles
or segment diameters, can be automatically extracted. The basis for
this structuring is extracting the skeleton of the vascular tree.

The vascular skeleton can be extracted directly from the original
(gray scale) image based on the curvature properties of the image,
using, for example, ridge traversal [1]. However, these techniques
are computationally expensive and may not be ideal for extracting
the underlying structures in all cases, since the skeletal extraction
is explicitly connected to global models that might be difficult to
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match in the presence of confounding anatomical structures. By
extracting the skeleton from a segmented image, a wide variety
of segmentation techniques can be used to accurately capture the
vascular structures of interest. Given a segmented image, research-
ers have proposed a variety of means of extracting the skeleton,
using, for example, wave propagation [2] or tracing optimal paths
using Dijkstra’s algorithm (e.g. [3]). However, these methods are
sensitive to the cost functions selected for the algorithm and the
shortest path through a curve is not at the center of a vessel.
Alternatively, parallel thinning techniques are model-free,
morphology-based approaches to skeleton extraction [4].

However they are created, automatically generated skeletons
will almost inevitably require pruning of spurious centerlines.
This pruning may be based on simple features such as centerline
length [5] or by trying to recognize non-physiological branching
angles [6]. Consequently, we explore using machine learning tech-
niques to automatically prune spurious centerlines.

Given a skeleton, the task remains to recognize endpoints and
bifurcations in order to define the underlying vascular structures.

The ability to automatically extract the pulmonary arterial
structure has a variety of important implications. First, it could
help in the development of computer-aided diagnosis algorithms
for pulmonary vascular diseases. For example, these automated
techniques could be used to quantify vascular geometry as
depicted in volumetric medical images (CT or MR), to assist in
the diagnosis of pulmonary arterial hypertension (PAH). While
manual arterial measurements have been shown to differentiate
PAH subjects from normal subjects [7-10], automated feature
extraction for PAH diagnosis would aid radiology workflow.
Further, automated measurements would allow a more compre-
hensive disease characterization based on a fuller assessment of
the arterial tree, rather than being limited to a few arteries.
Similarly, automated vascular tree extraction could help in the
design of computer-aided diagnosis of pulmonary embolism by
eliminating non-arterial structures prior to the search for filling
defects or by limiting the search to a vascular depth that is deemed
clinically significant (e.g. excluding sub segmental arteries). These
automated techniques could also be used for large-scale, retrospec-
tive image-based analysis for quality assurance purposes or for
image-based phenotyping for knowledge discovery in conjunction
with additional clinical and genomic information.

We used the Python programming language for our tool devel-
opment, incorporating unmodified third-party, open source image
analysis and visualization libraries, such as the Insight Toolkit [11]
and the Visualization Toolkit [12] that were accessed through
Python wrappers. These tools and all dependencies are easily
installed on multiple platforms. We evaluated our methods on a
set of 116 CT pulmonary angiography (CTPA) images.

2. Materials and methods

We begin with a description of our data collection and vascular
segmentation followed by the vascular graph generation process,
where we detail how we map the voxels from the original segmen-
tation to the graph edges to build a complete representation of the
vascular structure. Finally, we describe our machine learning
approach for pruning the spurious segments from the graph and
thus improving the semantic labeling of our models.

2.1. Data collection

For this study, we used a set of 116 de-identified CTPA exams
that had been collected for other studies. All images were acquired
at the same institution with diagnostic imaging settings using sim-
ilar multi-row detector helical CT scanners reconstructed with slice

thickness ranging from 0.625 mm to 5.0 mm; the modal thickness
was 1.25 mm.

2.2. Vascular segmentation and skeleton generation

Automated segmentation of medical images remains one of the
most difficult problems in medical image processing [13]. While
machine learning techniques for image segmentation have had a
great impact on segmentation of traditional 2D scenes, a similar
impact has not been seen in medical imaging where the number
of available cases is much smaller and the cost of annotating
images for training much higher [14]. Consequently, several
researchers have introduced unsupervised learning techniques
[14,15]. Nonetheless, within the sub-domain of vascular segmenta-
tion, the state-of-the art techniques still rely on rules applied to
tubular models of vascular structures, which are very good at
extracting the peripheral pulmonary arteries but generally cannot
capture the central arteries (pulmonary trunk and left and right
pulmonary). These central vessels, which are presumably the most
informative for diseases such as pulmonary arterial hypertension,
are difficult to segment automatically because of their proximity
to confounding structures such as the heart and the aorta. Since
our primary interest is in structuring a vascular segmentation
rather than in developing novel segmentation algorithms, we used
the geometric level set algorithm in ITK-SNAP [16] to generate an
initial segmentation of the vasculature followed by hand editing of
the resulting segmentation using the paintbrush tool in ITK-SNAP.
We felt this would produce segmentations similar to a quasi ideal
automated technique. Since this work was motivated in part by the
problem of automated characterization of pulmonary hyperten-
sion, we focused our segmentations on the central pulmonary
arteries (pulmonary trunk and left and right pulmonary arteries).

The level-set segmentation required the user to both provide
seed points from where to start the segmentation and either an
intensity or gradient mapping that drives the evolution of the seg-
mentation. We chose to use intensity maps because our initial
experience was that the intensity maps generally produced less
leakage of the segmentation into non-vascular structures. Seed
points were placed in the pulmonary trunk and the left and right
pulmonary arteries (Fig. 1). The segmentation was allowed to pro-
ceed until the pulmonary trunk and left and right pulmonary arter-
ies were fully captured. The amount the segmentation bled into
non-vascular structures and how far down the vascular tree the
segmentation proceeded varied depending on the characteristics
of the particular CTPA exam.

Manual editing of the vascular segmentation was done by
reviewing the segmentation on a slice-by-slice basis. Using the
paintbrush tool in ITK-SNAP, any observed leakages of the segmen-
tation into non-vascular structures were deleted (Fig. 2). We did
not, however, delete any vascular structures beyond the central
arteries that were included in the segmentation. Consequently
the complexity of the pulmonary arterial tree that was captured
varied on a case-by-case basis.

2.2.1. Segmentation preprocessing

We observed that imperfections in the segmentation, such as
small holes and surface irregularities, could lead to great difficulty
in cleanly generating the vascular graph model skeleton.
Consequently, some preprocessing of the segmentation had to be
performed prior to generating the skeleton and then the graph.
We explored using common binary filters to reduce these imper-
fections prior to 3D parallel thinning. Specifically, we explored
using median filtering [17] and morphological closing [18], alone
and in combination. Both filters were implemented using ITK fil-
ters (itkBinaryMedianlmageFilter and itkBinaryMorphologicalClos
inglmageFilter respectively) with either (1,1, 1) or (2, 2,2) kernels.
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