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a b s t r a c t

One of the challenging problems in drug discovery is to identify the novel targets for drugs. Most of the
traditional methods for drug targets optimization focused on identifying the particular families of ‘‘drug-
gable targets’’, but ignored their topological properties based on the biological pathways. In this study, we
characterized the topological properties of human anticancer drug targets (ADTs) in the context of biolo-
gical pathways. We found that the ADTs tended to present the following seven topological properties:
influence the number of the pathways related to cancer, be localized at the start or end of the pathways,
interact with cancer related genes, exhibit higher connectivity, vulnerability, betweenness, and closeness
than other genes. We first ranked ADTs based on their topological property values respectively, then
fused them into one global-rank using the joint cumulative distribution of an N-dimensional order statis-
tic to optimize human ADTs. We applied the optimization method to 13 anticancer drugs, respectively.
Results demonstrated that over 70% of known ADTs were ranked in the top 20%. Furthermore, the perfor-
mance for mercaptopurine was significant: 6 known targets (ADSL, GMPR2, GMPR, HPRT1, AMPD3,
AMPD2) were ranked in the top 15 and other four out of the top 15 (MAT2A, CDKN1A, AREG, JUN) have
the potentialities to become new targets for cancer therapy.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The identification of novel drug targets is a major challenge in
medicine and biology. Traditionally, most studies have focused
on the identification of particular families of ‘‘druggable targets’’
and achieved significant success [1,2]. However, genes rarely func-
tion in isolation in a complex biological system, especially when a
patient undergoes drug treatment (such as the anticancer therapy).
A growing body of evidence indicate that drug design should focus
on all the drug-affected genes simultaneously from the genome-
wide perspective [3]. Recently, with the development of
high-throughput biological experimental technologies, a large col-
lection of gene expression profiles with drug treatments is avail-
able, such as the Connectivity Map (CMap) [4]. Many expression-

based approaches have emerged for further understanding of drug
mechanisms in the whole genome [5–7]. These methods have pri-
marily focused on single drug target without considering the inter-
actions among them. Studies have demonstrated that the drugs
affect not only their intended targets but also other genes that
interact with them or trigger the downstream molecular events
[8]. The increasing use of protein–protein interactions (PPIs)
allowed for network-based approach to predict novel drug targets
[9–11]. These studies showed that some topological properties,
including betweenness, closeness and connectivity, within pro-
tein–protein network could distinguish known ADTs from other
genes significantly. Thus, the topological properties within pro-
tein–protein network can be used to better assess the potentiality
of a node as a novel drug target [9–11].

Biological pathways that belong to more accurate
network-based data have superior properties that naturally suited
to discover novel drug targets [12,13]. Firstly, the pathways were
reliable because they were curated manually from scientific
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literature, such as the KEGG PATHWAY Database [14]. Secondly, it
was convenient to consider a pathway in isolation as a particular
function module [15,16]. Thus, it was feasible to map the drug tar-
gets into certain pathways to elucidate the mechanisms of action
of the drug. Finally, the biological pathways were directional. So,
it was practical to assess the importance of the potential drug tar-
gets according to its position or interaction [16,17]. For example,
the insulin receptor (INSR), which was involved in the insulin path-
way and the adherens junction pathway, plays a more important
role in insulin pathway due to its terminal position and high con-
nectivity compared to its role in adherens junction pathway [18].
Taken together, the biological pathways are highly valuable and
powerful for optimization of the drug targets.

In this study, we carefully analyzed the topological properties of
human ADTs in the context of biological pathways and found seven
topological properties that could distinguish known ADTs from
other genes significantly. We proposed an optimization approach
for human ADTs through integrating all seven pathway-level topo-
logical properties to rank the candidate ADTs. Our pathway-based
method can help solve some limitations of PPI-based methods,
including (1) the lack of consideration regarding the functional
module in which several genes carry out a specific function
together, (2) the difficulty in understanding the global importance
of any gene in one module or across all of these various functional
modules, (3) the directionless assessment of information transfer
across the genes in functional module. We applied this method
to 13 anticancer drugs respectively, and achieved good optimiza-
tion, particularly for the drugs mercaptopurine and methotrexate.
In conclusion, the optimization strategy we developed, which was
based on pathway-level topological properties, offers a new sight
and could aid in the discovery of novel anticancer drug targets.

2. Materials and methods

2.1. Datasets

2.1.1. Known anticancer drug targets (ADTs)
The drug targets dataset was downloaded from the KEGG and

DrugBank database [14,19]. We extracted all the anticancer drugs
and their targets according to the disease and the Anatomical
Therapeutic Chemical (ATC) information. Finally, we obtained
573 ‘‘anticancer drug–target’’ relationships and 155 targets.

2.1.2. Four types of special neighbor genes
To test whether the known ADTs interacted with the cancer

related genes, cancer genes (CGs), cancer hallmark genes (CHMGs),
known anticancer drug target genes (KADTGs) and genes encoding
the nuclear membrane proteins (NMPGs) were used as four types
of special neighbor genes, which were important for cancer ini-
tiation, progression and therapy in the following analysis.

766 CGs were obtained from the report by Li et al. [20]. CHMGs
in the study were defined as genes functionally involved in the six
cancer hallmarks, including self-sufficiency in growth signals,
insensitivity to antigrowth signals, evasion of apoptosis, limitless
replicative potential, sustained angiogenesis, tissue invasion and
metastasis [21]. We obtained 1320 genes as CHMGs, which were
functionally annotated with ‘‘DNA repair’’, ‘‘cell growth’’, ‘‘cell pro-
liferation’’, ‘‘angiogenesis’’, ‘‘cell migration’’, and ‘‘locomotion’’
from Gene Ontology (GO) [22]. KADTGs mean genes known as anti-
cancer drug targets, we obtained 155 KADTGs from KEGG and
DrugBank. NMPGs mean genes that encode the nuclear membrane
proteins. In particular, we selected 149 NMPGs with a nuclear
membrane subcellular location from the Uniprot Knowlegebase
(UniprotKB) [23].

2.1.3. Biological pathways
Information regarding the biological pathways was obtained

from the KEGG PATHWAY database [14], including metabolic and
non-metabolic pathways. We used the R-based software package
SubpathwayMiner to reconstruct all pathways graphically [15].
This type of reconstruction retains the raw information of the path-
ways, particularly the structures, and provides detailed and reli-
able information for analyzing the ADT topological properties
based on these biological pathways.

2.1.4. Anticancer drug gene expression data
In order to optimize the targets for anticancer drugs from the

whole genome, we utilized transcriptional data for cultured human
cancer cells treated with anticancer drugs obtained from CMap
(http://www.broadinstitute.org/cmap/). The library contains 6100
instances of 4 cancer cell lines treated with 1309 distinct small
molecules [4]. We downloaded all the instances, gene expression
profiles and their associated annotation file ‘‘cmap_in-
stances_02.xls’’ from the CMap website. According to the annota-
tion information, 42 among the 1309 bioactive small molecules
were anticancer drugs. The instance information that these drugs
corresponded to were used to extract the anticancer drug gene
expression data.

2.1.5. Gene expression profiles of cancers with the survival time
information

To validate that the candidate targets with prior rank have
closely correlation with cancer patients’ survival time, we down-
loaded 9 gene expression profiles of cancers with the survival time
information from GEO database (http://www.ncbi.nlm.nih.gov/-
geo/): 3 lung adenocarcinoma profiles (GSE13213, GSE3141,
GSE8894), 3 breast cancer profiles (GSE2990, GSE4922, GSE1456),
and 3 colon cancer profiles (GSE12945, GSE17536, GSE14333).

2.2. Methods

2.2.1. Identifying candidate targets for anticancer drugs
We identified the candidate targets for each anticancer drug

according to its expression profiles from the CMap database [24].
For each instance of drug, we matched perturbation and control
pairs of expression profiles according to descriptions of the
instances in the file ‘‘cmap_instances_02.xls’’. Then we used
fold-change analysis to identify differentially expressed genes
(DEGs) for each instance with |log2fold-change|>log21.5 (gene
expression up-regulated or down-regulated 1.5 folds) between
the corresponding treatments and control gene expression profiles.
The DEGs were merged if the corresponding instances belonged to
the same drug, these genes were considered to be anticancer drug
affected genes. As a result, of 42 anticancer drugs in CMap, we
obtained the corresponding 13,082 DEGs which were significantly
affected by at least two anticancer drugs. An anticancer drug can
correspond to 1345 genes on average. They were considered as
the candidate targets for anticancer drug and were used to identify
the cancer related crucial pathways.

2.2.2. Identifying cancer related crucial pathways (CRCPs)
The pathways that satisfied the following three rules were con-

sidered to be CRCPs: associated with cancer initiation and progres-
sion; important for cancer therapy; and prone to be affected by the
anticancer drugs. Subsequently, we performed pathway annotated
analysis for three gene sets: cancer gene set (766 genes), known
ADT gene set (155 genes), and anticancer drug affected gene set
(13082 genes). The concurrently annotated pathways for these
three gene sets were regarded as the CRCPs and used for analyzing
the topological properties of the known ADTs.
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