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a b s t r a c t

When validating risk models (or probabilistic classifiers), calibration is often overlooked. Calibration
refers to the reliability of the predicted risks, i.e. whether the predicted risks correspond to observed
probabilities. In medical applications this is important because treatment decisions often rely on the
estimated risk of disease. The aim of this paper is to present generic tools to assess the calibration of
multiclass risk models.

We describe a calibration framework based on a vector spline multinomial logistic regression model.
This framework can be used to generate calibration plots and calculate the estimated calibration index
(ECI) to quantify lack of calibration. We illustrate these tools in relation to risk models used to character-
ize ovarian tumors. The outcome of the study is the surgical stage of the tumor when relevant and the
final histological outcome, which is divided into five classes: benign, borderline malignant, stage I, stage
II–IV, and secondary metastatic cancer. The 5909 patients included in the study are randomly split into
equally large training and test sets. We developed and tested models using the following algorithms:
logistic regression, support vector machines, k nearest neighbors, random forest, naive Bayes and nearest
shrunken centroids.

Multiclass calibration plots are interesting as an approach to visualizing the reliability of predicted
risks. The ECI is a convenient tool for comparing models, but is less informative and interpretable than
calibration plots. In our case study, logistic regression and random forest showed the highest degree of
calibration, and the naive Bayes the lowest.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

For medical applications, prediction models that provide
probabilistic (risk) estimates of an event of interest are useful

for clinical decision support, personalized healthcare, and shared
decision making. Prior to the implementation of such tools in clin-
ical practice, validation with respect to discrimination and
calibration is required [1–6]. A model should be able to distin-
guish between different possible outcome categories (discrimina-
tion). This can be evaluated using the area under the receiver
operating characteristic curve (AUC) or multiclass extensions of
this approach. Calibration assessment is often overlooked, but is
of importance for several applications where risk models may
be used. Such applications include decisions whether or not to
treat a patient [7], start preventive action, or to inform the choice
of treatment [8]. Calibration is also relevant when informing
patients about risk [9], when comparing hospitals with respect
to quality of care (e.g. benchmarking based on mortality risk)
[10], and when identifying high risk patients for inclusion in clin-
ical trials [11]. The optimal use of risk models in these situations
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relies on reliable risk estimation. For example, a classic result
from decision analysis states that the adopted risk threshold to
decide whether or not to take further action implies specific
misclassification costs [12]: the odds of the risk threshold equals
the ratio of the harm of a false positive test result to the benefit of
a true positive result. For example if a risk threshold of 10% is
adopted, the assumption is that 1 true positive is worth 9 false
positives. If a poorly calibrated risk model is then used to assess
whether patients exceed the planned threshold, inappropriate
decisions may be taken.

For binary outcomes, the relationship between predicted and
observed probabilities can be visualized by means of a calibration
plot [1,13,14]. Observed probabilities are sometimes obtained by
computing event rates within groups of patients with similar pre-
dicted probabilities (e.g. decile split). However, often flexible
smoothing methods such as local regression (loess) or splines are
used to link predicted probabilities to estimated observed prob-
abilities [1].

Recently, our group extended binary calibration plots to multi-
class models based on multinomial logistic regression (MLR) [15].
We proposed two frameworks, one parametric and one non-para-
metric. Logistic regression is a common algorithm to build binary
and multiclass clinical prediction models, and naturally works with
risk estimates. However, machine learning algorithms are also
used for clinical risk prediction [16–21], and are very frequently
used in high dimensional and/or ‘‘large p, small n’’ prediction stud-
ies (i.e. a large number of predictors and a small number of
patients) [22–24]. Moreover, although using machine-learning
approaches for classification problems is often less suited to prob-
ability estimation, methods do exist to facilitate this [25–30]. The
calibration performance of risk models is an issue that is often
neglected, and it is not surprising that with a few exceptions this
is frequently the case for models based on machine learning algo-
rithms [13,26,27,30–32].

The aim of this paper is to introduce a non-parametric frame-
work to evaluate the calibration of multiclass risk models irrespec-
tive of the modeling technique used. Based on this framework we
also derive a calibration measure to quantify and compare calibra-
tion performance between models. We illustrate these methods
with a case study looking at the classification of ovarian tumors.
We develop and validate risk models to diagnose tumor pathology
based on logistic regression, support vector machines, k-nearest

neighbors, random forest, naive Bayes and nearest shrunken
centroids.

2. Non-parametric recalibration framework

Our group developed calibration tools for risk models based on
multinomial logistic regression (MLR) [15]. Assume an MLR or
‘baseline-category logit’ model [33] with m predictors x1 to xm

for an outcome with J (j = 1, . . . , J) categories. If category 1 is chosen
as the reference category, the model is written as

log P Y¼2ð Þ
P Y¼1ð Þ

h i
¼ a2 þ

Pm
l¼1b2lxl ¼ lp21

log P Y¼3ð Þ
P Y¼1ð Þ

h i
¼ a3 þ

Pm
l¼1b3lxl ¼ lp31

. . .

log P Y¼Jð Þ
P Y¼1ð Þ

h i
¼ aJ þ

Pm
l¼1bJlxl ¼ lpJ1

8>>>>>><
>>>>>>:

ð1Þ

and the multiclass risks are obtained as

P Y ¼ 1ð Þ ¼ p1 ¼ 1
1þexpðlp21Þþexpðlp31Þþ���þexpðlpJ1Þ

¼ 1

1þ
PJ

j¼2
expðlpj1Þ

P Y ¼ 2ð Þ ¼ p2 ¼ expðlp21Þ
1þexpðlp21Þþexpðlp31Þþ���þexpðlpJ1Þ

¼ expðlp21Þ
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P Y ¼ Jð Þ ¼ pJ ¼
expðlpJ1Þ
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Let l̂p21; . . . ; l̂pJ1

n o
denote the estimated linear predictors and

p̂1; . . . ; p̂J
� �

the estimated multiclass risks. The non-parametric
recalibration framework for such models relates the multiclass out-

come Y on the estimated J � 1 linear predictors l̂p21; . . . ; l̂pJ1

n o
from

the MLR risk model through a vector spline [34] MLR analysis [15]:

log PðY ¼ 2Þ=PðY ¼ 1Þ½ � ¼ a2 þ
PJ

j¼2 b2j � s2 l̂pj1

� �� �

log P Y ¼ 3ð Þ=P Y ¼ 1ð Þ½ � ¼ a3 þ
PJ

j¼2 b3j � s3 l̂pj1

� �� �

. . .

log P Y ¼ Jð Þ=P Y ¼ 1ð Þ½ � ¼ aJ þ
PJ

j¼2 bJj � sJ l̂pj1

� �� �

8>>>>>><
>>>>>>:

ð3Þ

with sð�Þ ¼ s2ð�Þ; s3ð�Þ; . . . ; sJð�Þ
� �

a vector spline smoother applied to
each linear predictor [15,34]. This vector spline smoother sð�Þ is a nat-
ural extension of the cubic spline smoother to vector responses and

Table 1
Descriptive statistics of the ovarian tumor case study.

Benign Borderline Stage I Stage II–IV Metastatic

Outcome, N 3980 339 356 988 246
Variable, N (%) or median (IQR)

Age (years) 42 (32–54) 49 (36–62) 54 (44–64) 59 (50–67) 57 (47–68)
Serum CA125 (U/mL)a 19 (11–39) 31 (16–100) 52 (21–190) 447 (147–1215) 81 (30–271)
Family history of ovarian cancer 79 (2.0) 10 (3.0) 13 (3.7) 57 (5.8) 5 (2.0)
Maximal diameter of lesion (mm) 63 (45–87) 86 (51–150) 106 (71–153) 85 (56–123) 86 (56–124)
Solid tissue

Presence of solid tissue 1322 (33.2) 267 (78.8) 328 (92.1) 968 (98.0) 234 (95.1)
Proportion solid tissue if present (%) 42 (20–100) 37 (24–59) 61 (38–100) 100 (56–100) 100 (64–100)

Number of papillary projections
None 3424 (86.0) 135 (39.8) 227 (63.8) 772 (78.1) 213 (86.6)
1 333 (8.4) 69 (20.4) 25 (7.0) 56 (5.7) 12 (4.9)
2 80 (2.0) 21 (6.2) 17 (4.8) 30 (3.0) 0 (0)
3 66 (1.7) 24 (7.1) 17 (4.8) 28 (2.8) 2 (0.8)
>3 77 (1.9) 90 (26.5) 70 (19.7) 102 (10.3) 19 (7.7)

More than 10 cyst locules 199 (5.0) 74 (21.8) 69 (19.4) 93 (9.4) 36 (14.6)
Acoustic shadows 676 (17.0) 8 (2.4) 18 (5.1) 30 (3.0) 10 (4.1)
Ascites 64 (1.6) 28 (8.3) 65 (18.3) 473 (47.9) 90 (36.6)

Missing values for CA125, N (%) 1447 (36.4) 62 (18.3) 71 (19.9) 163 (16.5) 62 (25.2)

Abbreviations: IQR; InterQuartile Range.
a Results for Serum CA125 are based on single imputation of missing values.
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