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a b s t r a c t

The protection of privacy of individual-level information in genome-wide association study (GWAS) dat-
abases has been a major concern of researchers following the publication of ‘‘an attack’’ on GWAS data by
Homer et al. (2008). Traditional statistical methods for confidentiality and privacy protection of statistical
databases do not scale well to deal with GWAS data, especially in terms of guarantees regarding protec-
tion from linkage to external information. The more recent concept of differential privacy, introduced by
the cryptographic community, is an approach that provides a rigorous definition of privacy with mean-
ingful privacy guarantees in the presence of arbitrary external information, although the guarantees may
come at a serious price in terms of data utility. Building on such notions, Uhler et al. (2013) proposed new
methods to release aggregate GWAS data without compromising an individual’s privacy. We extend the
methods developed in Uhler et al. (2013) for releasing differentially-private v2-statistics by allowing for
arbitrary number of cases and controls, and for releasing differentially-private allelic test statistics. We
also provide a new interpretation by assuming the controls’ data are known, which is a realistic assump-
tion because some GWAS use publicly available data as controls. We assess the performance of the pro-
posed methods through a risk-utility analysis on a real data set consisting of DNA samples collected by
the Wellcome Trust Case Control Consortium and compare the methods with the differentially-private
release mechanism proposed by Johnson and Shmatikov (2013).

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A genome-wide association study (GWAS) tries to identify ge-
netic variations that are associated with a disease. A typical GWAS
examines single-nucleotide polymorphisms (SNPs) from thou-
sands of individuals and produces aggregate statistics, such as
the v2-statistic and the corresponding p-value, to evaluate the
association of a SNP with a disease.

For many years researchers have assumed that it is safe to pub-
lish aggregate statistics of SNPs that they found most relevant to
the disease. Because these aggregate statistics were pooled from
thousands of individuals, they believed that their release would
not compromise the participants’ privacy. However, such belief
was challenged when Homer et al. [1] demonstrated that, under
certain conditions, given an individual’s genotype, one only needs
the minor allele frequencies (MAFs) in a study and other publicly

available MAF information, such as SNP data from the HapMap1

project, in order to ‘‘accurately and robustly’’ determine whether
the individual is in the test population or the reference population.
Here, the test population can be the cases in a study, and the refer-
ence population can be the data from the HapMap project. Homer
et al. [1] defined a distance metric that contrasts the similarity be-
tween an individual and the test population and that between the
individual and the reference population, and constructed a t-test
based on this distance metric. They then showed that their method
of identifying an individual’s membership status has almost zero
false positive rate and zero false negative rate.

However, Braun et al. [4] argued that the key assumptions of
the Homer et al. [1] attack are too stringent to be applicable in real-
istic settings. Most problematic are the assumptions that (i) the
SNPs are in linkage equilibrium and (ii) that the individual, the ref-
erence population, and the test population are samples from the
same underlying population. They presented a sensitivity analysis
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of the key assumptions and showed that violation of the first
assumption results in a substantial increase in variance and viola-
tion of the second condition, together with the condition that the
reference population and the test population have different sizes,
results in the test statistic deviating considerably from the stan-
dard normal distribution.

Notwithstanding the apparent limitation of the Homer et al. [1]
attack, the National Institute of Health (NIH) was cautious about
the potential breach of privacy in genetic studies (see Couzin [5]
and Zerhouni and Nabel [6]), and swiftly instituted an elaborate
approval process that every researcher has to go through in order
to gain access to aggregate genetic data.2,3 This NIH policy remains
in effect today.

The paper by Homer et al. [1] attracted considerable attention
within the genetics community and spurred interest in investigat-
ing the vulnerability of confidentiality protection of GWAS dat-
abases. The research efforts include modifications and extensions
of the Homer et al. attack, alternative formulations of the identifi-
cation problem, and different aspects of attacking and protecting
the GWAS databases; e.g., see [7–17]. In partial response to this lit-
erature, Uhler et al. [2] proposed new methods for releasing aggre-
gate GWAS data without compromising an individual’s privacy by
focusing on the release of differentially-private minor allele fre-
quencies, v2-statistics and p-values.

In this paper, we develop a differentially-private allelic test sta-
tistic and extend the results on differentially-private v2-statistics
in [2] to allow for an arbitrary number of cases and controls. We
start with some main definitions and notation in Section 2. The
new sensitivity results are presented in Section 3. Uhler et al. [2]
proposed an algorithm based on the Laplace mechanism for releas-
ing the M most relevant SNPs in a differentially-private way. In the
same paper they also developed an alternative approach to differ-
ential privacy in the GWAS setting using what is known as the
exponential mechanism linked to an objective function perturbation
method by Chaudhuri et al. [18]. This was proposed as a way to
achieve a differentially-private algorithm for detecting epistasis.
But the exponential mechanism could in principle have also been
used as a direct alternative to the Laplace mechanism of Uhler
et al. [2]. This is in fact what Johnson and Shmatikov [3] proposed.
Their method selects the top-ranked M SNPs using the exponential
mechanism. In Section 4 we review the algorithm based on the La-
place mechanism from [2] and propose a new algorithm based on
the exponential mechanism by adapting the method by Johnson
and Shmatikov [3]. Finally, in Section 5 we compare our two algo-
rithms to the algorithm proposed in [3] by analyzing a data set
consisting of DNA samples collected by the Wellcome Trust Con-
sortium (WTCCC)4 and made available to us for reanalysis.

2. Main definitions and notation

The concept of differential privacy, recently introduced by the
cryptographic community (e.g., Dwork et al. [19]), provides a no-
tion of privacy guarantees that protect GWAS databases against
arbitrary external information.

Definition 1. Let D denote the set of all data sets. Write D � D0 if D
and D0 differ in one individual. A randomized mechanism K is
�-differentially private if, for all D � D0 and for any measurable set
S � R,

PrðKðDÞ 2 SÞ
PrðKðD0Þ 2 SÞ

6 e�:

Definition 2. The sensitivity of a function f : DN ! Rd, where DN

denotes the set of all databases with N individuals, is the smallest
number Sðf Þ such that

kf ðDÞ � f ðD0Þk1 6 Sðf Þ;

for all data sets D;D0 2 DN such that D � D0.
Releasing f ðDÞ þ b, where b � Laplace 0; Sðf Þ

�

� �
, satisfies the defi-

nition of �-differential privacy (e.g., see [19]). This type of release
mechanism is often referred to as the Laplace mechanism. Here �
is the privacy budget; a smaller value of � implies stronger privacy
guarantees.

2.1. SNP summaries using contingency tables

Following the notation in [20], we can summarize the data for a
single SNP in a case-control study with R cases and S controls using
a 2� 3 genotype contingency table shown in Table 1, or a 2� 2
allelic contingency table shown in Table 2. We require that mar-
gins of the contingency table be positive.

Definition 3. The (Pearson) v2-statistic based on a genotype
contingency table (Table 1) is

Y ¼ ðr0N � n0RÞ2

n0RS
þ ðr1N � n1RÞ2

n1RS
þ ðr2N � n2RÞ2

n2RS
:

Definition 4. The allelic test is also known as the Cochran–Armit-
age trend test for the additive model. The allelic test statistic based
on a genotype contingency table (Table 1) is equivalent to the
v2-statistic based on the corresponding allelic contingency table
(Table 2). The allelic test statistic can be written as

YA ¼
2N3

RS
ðs1 þ 2s2Þ � S

N ðn1 þ 2n2Þ
� �2

2Nðn1 þ 2n2Þ � ðn1 þ 2n2Þ2
:

The Pearson v2-test for genotype data and the allelic test for al-
lele data are among the most commonly used statistical tests for
association in GWAS. Zheng et al. [21] suggest using the allelic test
when the genetic model of the phenotype is additive, and the
Pearson v2-test when the genetic model is unknown.

3. Sensitivity results

Under the assumption that there are an equal number of
cases and controls, Uhler et al. [2] found the sensitivities of the

Table 1
Genotype distribution.

# Of minor alleles Total

0 1 2

Case r0 r1 r2 R
Control s0 s1 s2 S
Total n0 n1 n2 N

Table 2
Allelic distribution.

Allele type Total

Minor Major

Case r1 þ 2r2 2r0 þ r1 2R
Control s1 þ 2s2 2s0 þ s1 2S
Total n1 þ 2n2 2n0 þ n1 2N

2 http://gwas.nih.gov/pdf/Data%20Sharing%20Policy%20Modifications.pdf.
3 http://epi.grants.cancer.gov/dac/da_request.html.
4 http://www.wtccc.org.uk/.
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