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In this paper, the Jacobian matrix of the Coarse-Mesh Finite Difference (CMFD) method 
is analyzed. Both the homogenization and the current preservation effects are studied 
in heterogeneous multidimensional configurations. Some bounding values of the spectral 
radius are also given. An analytical stability analysis is carried on an interface slab 
problem. This analysis leads to the computation of the stability parameter introduced in 
the Generalized Coarse Mesh Rebalancing method. A dynamical stabilization technique is 
proposed for multidimensional neutron lattice calculations. Numerical calculations show 
that the proposed technique dumps the unstable modes, in particular in optically thick 
configurations, where the classical CMFD method fails to converge.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Coarse-Mesh Finite Difference (CMFD) method is an efficient and effective non-linear technique to accelerate discrete 
ordinates source iterations (SI). The iterative scheme is a two-level multigrid: the discretized transport operator is the fine 
operator that feeds the coarse diffusion operator at each iteration [1,2]. The equivalence transport-diffusion is established 
by dynamically preserving neutron balance on the coarse regions. This entails a flux-weighted homogenization for the 
cross sections and an artificial flux-current equation at interfaces of the CMFD meshes. The flux-current equation has a 
typical finite-difference form, which is adjusted with a transport-computed parameter guaranteeing the conservation of net 
interface currents. A specific finite-difference flux-current closure characterizes the version of the CMFD method [3]. This 
equation has an impact on the quality of the diffusion matrix, which is, in general, no longer symmetric. The coarse operator 
results in a sparse matrix of reduced dimensions in space, in angle and in energy, for multigroup applications. The CMFD has 
been successfully implemented in diffusion codes to accelerate multigroup iterations [2,4]. Years after, it was also applied to 
transport codes to speed up both SI and multigroup power iterations, with the possibility to perform also quick sensitivity 
studies [5,6].

However, the convergence of the CMFD is not assured. The acceleration can fail for very thick or very thin homogeneous 
regions in scattering-dominated regimes, as confirmed in the literature [6–8]. The Fourier analysis on infinite homogeneous 
problems, obtained by linearizing the scheme in the neighborhood of the fixed point, demonstrates that the acceleration 
is effective and stable only when the optical thickness of the coarse mesh is less than one mean free path (mfp). This 
recommendation for ensuring stability was extended also to heterogeneous calculations. However, in practical multigroup 
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lattice problems, it is not always convenient or possible to reduce the size of the coarse mesh to match the stability 
condition.

Based on the definition of two non-linear parameters, Yamamoto proposed an artificial flux-current equation to overcome 
non-converged cases [9]. The first parameter preserves the transport currents while the second modifies the finite-difference 
diffusion coefficient to prevent instabilities. This method was defined as the Generalized Coarse Mesh Rebalancing (GCMR) 
since, depending on the value of the second parameter, it can behave as the CMFD or as the Coarse Mesh Rebalancing 
(CMR). Yamamoto verified the effectiveness of the stability parameter by a Fourier analysis on an infinite homogeneous slab 
for different values of the optical thickness. The spectral radius of the iterative scheme has been evaluated as a function of 
the stability parameter allowing for the choice of the optimal parameter for a given problem configuration. This research 
has brought to light the possibility for stabilizing the scheme.

Jarrett and his coauthors suggest that several free transport source iterations prior to the application of the CMFD can 
stabilize the non-linear scheme. In this case, the transport feeds the non-linear operator with a ‘better’ solution, but the 
computational time may increase substantially because of the increasing number of transport sweeps [10]. Two techniques 
based on the modification of the diffusion coefficient are proposed: the first is the under-relaxation of the current correction 
factor, while the second, namely Artificial Grid Diffusion, consists in modifying the diffusion coefficient with an additional 
term which is the product of the spatial thickness of the mesh times a user’s parameter.

Lulu Li and her coauthors proposed a linear correction factor that takes into account the dependency of the average-flux 
from the neighboring coarse-cells [11]. Although the proposed technique improves the convergence speed of the method, it 
is deeply linked with the discretization of the fuel pin cell in sectors and it can not be generalized to any type of geometrical 
discretization.

In this paper, an explicit calculation of the Jacobian matrix is proposed to investigate instability issues. The research gives 
a clear view on the source of instabilities and allows for a viable strategy for a dynamical calculation of the stability parame-
ter. More precisely, the iterative scheme is viewed as a multivariable explicit dynamical system of the type φ(i+1) = F (φ(i)), 
where i is the iteration index and φ(i) and φ(i+1) contain the region-wise average scalar flux at two successive iterations. 
F (φ) summarizes the transport-diffusion nonlinear map, which is, in our case, infinitely differentiable except for regions 
in which φ = 0. The analysis of the Jacobian allows for the investigation of the stability close to and far from the fixed 
point [12]. The analysis is carried on separately for the interface-current conservation and for the cross-section homoge-
nization. In particular, two limit cases for the CMFD mesh are analyzed. The first is with the coarse mesh identical to the 
fine mesh: this eliminates the homogenization effects and keeps the nonlinearity introduced by the interface-current con-
servation. The second is with the fine mesh homogenized in a single coarse region: this keeps the non-linearity introduced 
by the flux-weighted cross-sections. The analysis is performed by using a simple parametrization of cross sections allow-
ing for the investigation of various heterogeneous configurations. Next, a stability parameter is introduced in a modified 
finite-difference diffusion coefficients following the GCMR technique. An “on the fly” technique for computing the stability 
parameter is proposed. The method, which is currently applied in multigroup lattice calculations, is the result of an analyt-
ical asymptotic study of an interface slab problem [13]. Numerical tests confirms improvements of the CMFD performances 
in both stability and effectiveness.

The remainder of this paper is divided as follows. Sections 2 introduces the notation for the CMFD matrix and the Average 
Flux Correction (AFC) scheme. Section 3 is dedicated to the calculation of the Jacobian matrix. Sections 4 and 5 analyze 
respectively the interface-current effect and the homogenization effect. In Section 6, the stability parameter is introduced 
and computed on a 2-node interface problem. In Section 7, the effectiveness of the stability parameter is evaluated on a 
heterogeneous 2D checkerboard problem studied with uniform and non-uniform flux distribution. In Section 8, a simplified 
strategy for multidimensional lattice problem is exposed. Finally, Section 8 and 9 contain respectively the verification of 
the stabilization strategy on the EIR2 benchmark and the conclusions. For completeness, several results have also been 
included in the Appendices: Appendix A describes the transport matrices used for the solution of the 2-node slab problem, 
Appendix B contains the calculation of approximated bounds for the spectral radius, Appendix C contains the study of the 
homogenization effect on a 2-node slab problem and, finally, Appendix D contains the analysis of infinite homogeneous 
configurations usually studied in the Fourier analysis.

2. CMFD operator with AFC drift closure

The CMFD operator is derived on a coarse mesh where each node is composed of one or more contiguous transport 
mesh regions. The CMFD quantities, as the integrated fluxes and currents, will be denoted by the subscript d, standing for 
diffusion. For convenience, we will use a region-wise numbering for the interfaces. The starting point of the CMFD operator 
is the node balance:∑

k′∩k

Jd,k→k′ + �d,a,kφd,k = Q d,k, (1)

where k is the coarse-node index, the sum in k′ is over all the nodes adjacent to node k indicated as k′ ∩ k, Jd,k→k′ is 
the surface-integrated net neutron current on the outgoing normal from k to k′ , and φd,k and Q d,k are respectively the 
volume-integrated scalar flux and the external source in node k. Also, in Eq. (1), �d,a,k is the absorption cross section in 
node k, which is obtained by flux-weighting homogenization from the transport calculation:
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