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A phase-space boundary integral method is developed for modelling stochastic high-
frequency acoustic and vibrational energy transport in both single and multi-domain 
problems. The numerical implementation is carried out using the collocation method in 
both the position and momentum phase-space variables. One of the major developments 
of this work is the systematic convergence study, which demonstrates that the proposed 
numerical schemes exhibit convergence rates that could be expected from theoretical 
estimates under the right conditions. For the discretisation with respect to the momentum 
variable, we employ spectrally convergent basis approximations using both Legendre 
polynomials and Gaussian radial basis functions. The former have the advantage of being 
simpler to apply in general without the need for preconditioning techniques. The Gaussian 
basis is introduced with the aim of achieving more efficient computations in the weak 
noise case with near-deterministic dynamics. Numerical results for a series of coupled 
domain problems are presented, and demonstrate the potential for future applications to 
larger scale problems from industry.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Noise and vibration simulations for mechanical structures are commonly performed using numerical solvers for linear 
wave equations [1,2]. The underlying numerical technologies are typically based on finite element methods, finite volume 
methods, boundary element methods or a variety of spectral methods. There are, however, two fundamental limitations 
when numerically approximating the solutions of wave equations directly in this manner. Firstly, the size of the numerical 
models required to obtain reliable results will eventually grow large enough to become computationally prohibitive when 
the local wavelengths become significantly smaller than the dimensions of the physical system. Secondly, the modal den-
sity increases with the frequency and, as a consequence, the vibrational responses of “identical” manufactured structures 
from the same production line can differ greatly in the high frequency regime. That is, uncertainties play a more impor-
tant role when the structural modes become sufficiently dense that they can exchange positions due to small structural 
differences within standard manufacturing tolerances. For these reasons statistical methods for predicting averaged energy 
distributions, such as Statistical Energy Analysis (SEA) [3], have become popular tools for high frequency noise and vibration 
simulations [4]. However, the underlying assumptions of SEA are often hard to verify a-priori, and the method only provides 
a coarse description of the structure under consideration since constant energy levels are assumed throughout relatively 
large substructures of the overall model [5].
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An alternative framework that can provide a more detailed description of the vibrational or acoustic energy distribution is 
to model wave energy transport at high frequencies via a geometrical ray description, which neglects interference and other 
wave effects. The underlying wave problem is then reduced to tracking densities of rays or particles in phase-space and 
becomes part of a wider class of mass, particle or energy transport problems driven by an underlying deterministic velocity 
field. The computational cost of direct ray or beam tracing methods, based on following rays or beams from a source to 
a receiver, scales with the number of paths that must be modelled. For complex domains including many reflections, the 
number of paths can grow so rapidly that applications in room acoustics are typically limited to including at most second 
order reflections [6]. Furthermore, in complex structures there may additionally be mode conversion and refraction effects 
to take into account. In these circumstances, indirect methods based on conservation laws such as the Liouville equation 
can provide a more practical alternative by propagating ray densities (instead of the rays themselves) through phase-space 
[7–10]. The deterministic propagation of ray densities according to the Liouville equation can be expressed using a transfer 
operator, known as the Frobenius–Perron operator [11], which transports ray densities along the trajectories of a dynamical 
system in general (in our case a Hamiltonian ray flow). These ideas have also found their way into the literature in computer 
graphics [12] and room acoustics [13] amongst others, where the corresponding transfer operator equation is often labelled 
the rendering equation.

A variety of techniques have been proposed for the discretisation of the Frobenius–Perron operator, with the aim of de-
veloping efficient numerical tools for practical applications. Domain based transfer operator approaches involve subdividing 
the phase-space and approximating the transition rates between these subdivided regions. One of the simplest approaches of 
this type is known as the Ulam method [14]. For a discussion of convergence properties of the Ulam method in one and sev-
eral dimensions, see Refs. [15] and [16], respectively. One shortcoming of the Ulam method is that it typically only exhibits 
sub-linear convergence rates. As a result of this slow convergence and the high-dimensionality of the phase-space, these 
methods have typically found only limited applications. In order to reduce memory costs and/or speed up the convergence, 
both wavelet and spectral methods have been proposed [17,18]. A boundary integral reformulation of the Frobenius–Perron 
operator for a ray flow is derived in Ref. [10], which can be used to determine the stationary ray density (in the long-time 
limit) corresponding to the high-frequency asymptotic solution of a frequency-domain wave problem. This has the advan-
tage of reducing the dimensionality from a full phase-space model to the Birkhoff coordinates for the phase-space on the 
boundary.

In this work we consider the ray dynamical modelling of wave energy transport through uncertain structures, which 
leads instead to a stochastic velocity field driving the energy transport. We propagate ray densities using the corresponding 
conservation law, here provided by the Fokker–Planck equation for the stochastic evolution of ray densities in phase-space 
under the action of a noisy flow [11,19]. Direct treatment of the Fokker–Planck equation is often considered infeasible [20], 
and in this work we will apply a boundary integral formulation of the Fokker–Planck equation for a Hamiltonian flow, where 
the associated boundary integral operator will take the form of a stochastic evolution operator. Through this approach we 
achieve a reduction in dimensionality to the boundary phase-space, which makes the corresponding numerical models both 
smaller and simpler to implement. Stochastic evolution operators have been extensively studied over the last twenty years 
via periodic orbit techniques [21–25]. Initial work focused on determining spectral properties of the Fokker–Planck operator 
for Langevin flows in the weak noise limit. However, more recent work has considered higher dimensional cases [26] and 
the estimation of stationary distributions [27]. Modified Ulam-type methods have also been devised for stochastic transfer 
operators, see for example Refs. [28,29].

The approach taken here will be based on a modification of a recently-proposed boundary integral reformulation of a 
stochastic evolution operator, for the case when the noisy flow has been replaced by a noisy boundary map [30]. The re-
sulting boundary integral operator is described in Sect. 2. The modified formulation proposed here has the advantage that 
it can be generalised from single to multi-domain problems by restricting the range of the noisy boundary map to the edge 
where the corresponding deterministic map arrives; see Sect. 2.3 for further details. In general, the spatial domain is rela-
tively complex (including corners) compared to the momentum domain, which simply corresponds to the range of angles 
pointing into the spatial domain at any given boundary point. Note also that highly peaked solutions with respect to the 
momentum variable are commonplace in ray tracing problems, whereas the solutions typically exhibit a milder dependence 
on the spatial variable. A local and low order approximation scheme in the spatial variable using piecewise constant col-
location is therefore appropriate and furthermore, leads to simplifications in the implementation of the boundary integrals 
as detailed in Sect. 3.1. For the approximation with respect to the momentum variable we consider two different possi-
bilities for a spectral collocation method in Sect. 3.2; a well-conditioned basis approximation using Legendre polynomials 
and a radial basis approximation using Gaussian functions. Despite requiring additional preconditioning strategies in order 
to obtain convergence, the latter has the advantage of providing an exact representation of the typical initial conditions 
in our proposed model and has the potential for computational cost savings in the case of near-deterministic propagation. 
These phase-space collocation schemes are detailed throughout Sect. 3 and have the advantage that we can demonstrate 
the consistency of our numerical implementation with theoretical convergence results for second-kind integral equations 
with bounded operators [31], as discussed in Sect. 4. We note that these results do not carry over to the Nyström method 
based discretisation applied in Ref. [30]. Finally, we detail a series of numerical experiments for multi-domain problems in 
Sect. 5, demonstrating the potential of the proposed methods to model built up structures from industrial applications in 
high-frequency structural vibrations and acoustics.
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