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This paper develops a finite element formulation and computational model for coupling 
electric and finite strain dynamic fields with widely discrepant frequencies, governing 
the behavior of piezoelectric materials. The piezoelectric materials are defined by time-
dependent nonlinear constitutive laws. A fully coupled, total Lagrangian finite element 
formulation is developed for modeling the electric and mechanical fields. A challenge 
in computational modeling of piezoelectric devices arise due to large discrepancy in 
the frequencies of the electrical signal and mechanical vibrations, especially when a 
large number of mechanical cycles need to be simulated. A wavelet transformation 
induced multi-time scaling (WATMUS) algorithm is developed for dynamic piezoelectric 
simulations. The WATMUS algorithm projects the high frequency electric fields on to 
the lower frequency of displacement and velocity fields, on which time integration is 
performed. The method significantly enhances the computational efficiency in comparison 
with single time scale integration methods. The accuracy and efficiency of the WATMUS 
algorithm are validated through piezo-electric applications.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Piezoelectric materials are increasingly in use in various technological applications, e.g. in actuators, sensors, robotics, 
energy harvesters, self-healing devices, stretchable electronics etc. [1–3]. Structures of these materials, when subjected to 
dynamic mechanical and/or electrical loading, develop mechanical and electrical fields that are governed by complex in-
teraction of multi-physics equations. Robust computational models of coupled electro-dynamics phenomena that depict the 
temporal evolution of electrical and mechanical fields are needed for simulations leading to the design of piezoelectric 
systems.

Studies have been conducted for understanding the role of electrostatic forces on material response in [4], for active 
polymers in [5] and dielectric materials in [6–8]. Higher order effects have been observed in piezoelectric and dielec-
tric material properties with large strain fields due to evolving electro-mechanical structure [9]. Constitutive models for 
piezoelectric behavior in finite deformation have been derived in [10,11]. Classical plate theories have been applied for the 
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design of piezoelectric laminates with bending and torsion modes in [12]. Acoustic wave equations for a piezoelectric crystal 
have been solved using the finite-difference method in time-domain in [13]. Finite element (FE) studies have incorporated 
piezoelectric-hyper-elasticity constitutive models for finite deformation kinematics in [14]. FE simulations of piezoelectric 
problems using beam and shell elements and geometrically nonlinear composites have been conducted in [15–17] and [18]
respectively. A-posteriori error of FE solutions of thin multi-layer piezoelectric plates has been analyzed in [19]. A beam-like 
structure with bonded piezoelectric sheets is studied for load transfer in [20], while the actuator model in [21] incorporates 
both axial and transverse shear forces. A generalized framework for coupling transient electromagnetic and finite deforma-
tion dynamic fields has been developed in [22] for predicting the evolution of electrical and magnetic fields and their fluxes 
in vibrating substrates.

A number of piezoelectric devices, e.g. vibrating energy harvesters [23], smart structures [24], surgical equipments 
[25], involve transient phenomena with oscillatory electrical signals in a vibrating substrate. Time integration of the cyclic 
transient response can be a major challenge in modeling coupled multi-physics problems, when disparate time-scales (or 
frequencies) govern the different physics of the problem. In conventional semi-discrete FE models using single time-scale 
time integration methods, time-increments are dictated by the higher frequency field. Each cycle of the higher frequency 
field is discretized into a number of temporal points to meet stability requirements. For transient electromagnetic and dy-
namic mechanical problems, the frequency ratio of electromagnetic to mechanical loadings can often be very high, e.g. 
ωem
ωme

∼ 104. For these frequency ratios, the single time-scale integration in a coupled analysis requires simulating an inor-
dinate number of electromagnetic cycles to transcend a small number of mechanical cycles. This could be computationally 
prohibitive. To overcome this challenge, a wavelet transformation based multi-time scaling (WATMUS) method, originally 
developed for fatigue problems in [26,27], has been extended in [28,29] for coupled FE analysis of vibrating substrates car-
rying high frequency electromagnetic signals. The WATMUS method projects the high frequency electromagnetic response 
onto a lower frequency problem through the use of wavelet basis functions. No assumption of periodic response is made in 
WATMUS. Significant time-scale acceleration has been achieved with this method [26–29].

This paper develops a solution framework for coupled transient electric and dynamic field analysis of nonlinear piezo-
electric materials undergoing finite strain vibration and subject to oscillatory electric signals. The governing and constitutive 
equations for finite deformation piezo-electricity are discussed in section 2. A total Lagrangian finite element formulation 
is developed in 3. The wavelet transformation-based multi-time scaling (WATMUS) method for 3D piezoelectric problems 
is formulated in section 4. Numerical examples for two piezoelectric applications are solved in section 5 and the paper 
concludes with a summary in section 6.

2. Coupled governing and constitutive equations for piezoelectric materials

Coupled electrical and mechanical analysis of piezoelectric materials requires concurrent solution of the governing equa-
tions of motion and electric balance laws with nonlinear piezoelectric constitutive relations. In this paper, the finite strain 
governing and constitutive equations under finite strain kinematics are developed in a Lagrangian description, following 
electromagnetic-mechanical formulations in [22,28].

2.1. Mechanical and electrical governing equations in Lagrangian description

In this paper, scalar variables are denoted by Roman (a) or Greek letters (α), vectors by boldface Roman letters (b), 
second-order tensors by boldface italicized Roman letters (S ) or boldface Greek letters (α), third order tensors by special 
font letters (P) and fourth-order tensors by letters (C). Subscripts with lowercase (i, j,··· ) and uppercase variables (I, J ,··· )
correspond to variables in the current and reference configurations respectively. Wavelet coefficients are indexed with low-
ercase Roman letter superscripts (i, j,··· ) , while finite element node numbers are denoted by Greek letter superscripts (α,β,··· ) .

In the finite strain Lagrangian formulation, 0�(= �(0)) and t�(= �(t)) ∈ R correspond to the initial (reference) and 
current configurations respectively. The corresponding material and spatial coordinates are designated as XI and xi (I, i =
1, 2, 3), and the displacement of a material point is denoted by ui = xi − XI . The deformation gradient tensor is F = �X u+ I , 
where I is the identity tensor and �X denotes gradient operator in the reference configuration. The right Cauchy–Green 
deformation tensor is given as C = F T F with the Jacobian J = det(F ) > 0. The first and second Piola–Kirchhoff (PK) stresses 
are respectively expressed in terms of the Cauchy stress σ as [30]:

P = Jσ · F −T and S = J F −1 · σ · F −T (1)

The equilibrium equation for the coupled dynamic and electric problem at time t is expressed in the reference configuration 
as:

∂t Pm
i J

∂ X J
+ ∂t P M

i J

∂ X J
+ ρ0bm

i = ρ0üi in 0� (2)

where Pm
i J and P M

i J are respectively the components of the first Piola–Kirchhoff (PK) stress tensor due to the mechanical 
and electrical fields, ρ0 is the density in the reference configuration and bm

i is the mechanical body force per unit mass. 



Download English Version:

https://daneshyari.com/en/article/6928514

Download Persian Version:

https://daneshyari.com/article/6928514

Daneshyari.com

https://daneshyari.com/en/article/6928514
https://daneshyari.com/article/6928514
https://daneshyari.com

