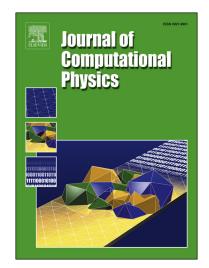
Accepted Manuscript

Algebraic dynamic multilevel method for embedded discrete fracture model (F-ADM)

Mousa HosseiniMehr, Matteo Cusini, Cornelis Vuik, Hadi Hajibeygi


PII: S0021-9991(18)30456-X

DOI: https://doi.org/10.1016/j.jcp.2018.06.075

Reference: YJCPH 8126

To appear in: Journal of Computational Physics

Received date: 17 April 2018 Revised date: 28 June 2018 Accepted date: 30 June 2018

Please cite this article in press as: M. HosseiniMehr et al., Algebraic dynamic multilevel method for embedded discrete fracture model (F-ADM), *J. Comput. Phys.* (2018), https://doi.org/10.1016/j.jcp.2018.06.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- Algebraic dynamic multilevel method for heterogeneous fractured media (F-ADM), by developing sequences of prolongation and restriction operators with local supports.
- F-ADM develops a multi-level embedded discrete fracture model, i.e., independent grids for fractures and matrix are used at all levels.
- F-ADM is directly applicable to heterogeneous fractured problems with no dependency on precalculated upscaled quantities.
- F-ADM develops a dynamic multilevel multiscale fully-implicit simulation method for multiphase flow in heterogeneous fractured media.

Download English Version:

https://daneshyari.com/en/article/6928524

Download Persian Version:

https://daneshyari.com/article/6928524

Daneshyari.com