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The work proposes a simple, efficient and unified approach to combat carbuncle phenome-
non. The basic idea of this approach is to construct an affordable shock-stable item into 
numerical flux. This item is acquired by comparing three-wave Roe solver and two-wave 
HLL solver based on Roe linearization and the projection of difference term. It is consistent 
with shear viscosity and meantime restrained by the pressure-based sensing function for 
shear layer. The proposed enhancement is easy to implement and apply within Roe, HLLEM, 
HLLC, AUSM+, etc. Several well-known cases illuminate its shock robustness and potential 
application to hypersonic flows.

© 2018 Elsevier Inc. All rights reserved.

1. Affordable shock-stable item

Shock-capturing or upwind schemes in Computational Fluid Dynamics (CFD) have prevailed and matured in the com-
putations of compressible flows. However, low-diffusion upwind schemes (e.g. Roe [1], HLLEM [2], HLLC [3], AUSM+ [4], 
etc.) are more or less vulnerable to shock instability or carbuncle phenomenon for hypersonic speeds. To alleviate this 
dilemma, many investigators have made tremendous efforts. For instance, Quirk [5] proposed a hybrid strategy using high-
dissipative schemes near shock waves and relative low-dissipative schemes elsewhere, which has been further developed 
by Nishikawa [6], Kim [7], etc. Liou [8] confirmed that the pressure difference term of mass flux has a great influence on 
shock instability, and this idea has promoted many shock-stable schemes [9]. Chen et al. [10] developed a normal velocity 
reconstruction (NVR) procedure with transverse information to suppress shock instability. Rodionov [11] suggested an ar-
tificial viscosity (AV) associated with viscous flux based on von Neumann and Richtmyer artificial viscosity. In the current 
work, the motivation is (1) to explain what kind of numerical viscosity is conducive to suppressing shock instability; (2) to 
propose another simple, efficient and unified approach to improve shock robustness against carbuncle instability.

The Euler equations in the x-direction are expressed in conservation form (∂t Q + ∂x F ( Q ) = 0) as:
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with density ρ , velocity u = (u, v)T , pressure p, total specific energy e, total enthalpy h, the unit normal vector n = (nx, ny)
T

and the normal velocity U = nxu + ny v . Based on the prefect law with the specific heat ratio γ = 1.4, the following rela-
tionship is established

a =
√

γ p

ρ
, e = p

(γ − 1)ρ
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2
, h = e + p

ρ
(2)

This system is numerically solved by a conservative method

Q n+1
i = Q n

i − �t

�x
[F i+1/2 − F i−1/2] (3)

with the numerical flux F i+1/2 evaluated by Riemann solvers, such as Roe [1], HLL [12], HLLEM [2], HLLC [3], AUSM+ [4], 
etc. In the current study, three-wave Roe solver and two-wave HLL solver are presented. The famous Roe solver [1] is given 
as:

F Roe
1/2( Q L, Q R) = F ( Q L) + F ( Q R)

2
− 1

2
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The subscripts “L” and “R” refer to the left and right states respectively, determined by reconstruction methods. The differ-
ence between the left and right states is shown with the operator �(·) = (·)R − (·)L . The superscript tilde “ ˜ ” stands for 
Roe average. Roe-averaged matrix Ã is similar to the convective flux Jacobian matrix A = ∂ F/∂ Q , while flow variables are 
replaced by Roe-averaged variables [1]. Despite high resolution of contact and shear waves, Roe is known to be vulnerable 
to carbuncle instability.

Two-wave HLL solver [12] is very robust against carbuncle instability but lacks contact and shear waves. It can be defined 
as
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Then, we compare Roe with HLL to attain the affordable shock-stable item via the following key steps.

Step 1: Project the difference term � Q onto the right eigenvector rk

� Q = Q R − Q L =
4∑

k=1

�lk · rk (6)

Wave strengths �lk are given as
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2ã2
, �l4 = ρ̃�V (7)

with the transverse velocity is V = −nyu + nx v . �l1 is left-moving acoustic wave strength, �l2 is entropy wave strength, 
�l3 is right-moving acoustic wave strength, �l4 is shear wave strength.

Right eigenvector rk is as follows

r1 =

⎡
⎢⎢⎣

1
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ṽ + ãny

h̃ + ãŨ
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with left-moving acoustic wave r1, entropy wave r2, right-moving acoustic wave r3 and shear wave r4.

Step 2: Use Roe linearization to obtain wave speed
Roe solver (Eq. (4)) can be further converted into

F Roe
1/2 = F L + F R

2
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2

4∑
k=1

�lk · rk · |λk|
λ1 = Ũ − ã, λ2 = Ũ , λ3 = Ũ + ã, λ4 = Ũ

(9)

where λ1 is left-moving acoustic wave speed, λ2 is entropy wave speed, λ3 is right-moving acoustic wave speed, λ4 is shear 
wave speed.
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