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We recently developed a treecode-accelerated boundary integral (TABI) solver for solving 
Poisson–Boltzmann (PB) equation [1]. The solver has combined advantages in accuracy, 
efficiency, memory, and parallelization as it applies a well-posed boundary integral 
formulation to circumvent many numerical difficulties associated with the PB equation and 
uses an O (N log N) treecode to accelerate the GMRES iterative solver. However, as observed 
in our previous work [2], occasionally when the mesh generator produces low quality 
triangles, the number of GMRES iterations required to solve the discretized boundary 
integral equations Ax = b could be large. To address this issue, we design a preconditioning 
scheme using preconditioner matrix M such that M−1 A has much improved condition 
while M−1z can be rapidly computed for any vector z. In this scheme, the matrix M
carries the interactions between boundary elements on the same leaf only in the tree 
structure thus is block diagonal with many computational advantages. The sizes of the 
blocks in M are conveniently controlled by the treecode parameter N0, the maximum 
number of particles per leaf. The numerical results show that this new preconditioning 
scheme improves the TABI solver with significantly reduced iteration numbers and better 
accuracy, particularly for protein sets on which TABI solver previously converges slowly. 
In addition, this preconditioning scheme potentially can improve the condition number 
of various multipole method accelerated boundary elements solvers in scattering, fluids, 
elasticity, etc.

Published by Elsevier Inc.

1. Introduction

In biomolecular simulations, electrostatic interactions are of paramount importance due to their ubiquitous existence 
and significant contribution in the entire force fields. However, computing these nonbonded interactions is challenging 
since they are pairwise at cost of O (N2) and long range [3]. To reduce the degree of freedom of the system in terms 
of electrostatic interactions, implicit solvent Poisson–Boltzmann (PB) model is used [4], in which the water molecules are 
treated as continuum and the dissolved electrolytes are approximated using the statistical Boltzmann distribution. The PB 
model has broad application in biomolecular simulations such as protein structure [5], protein–protein interaction [6,7], 
chromatin packing [8], pKa [9–12], membrane [13,14], binding energy [15–17], solvation free energy [18,19], ion channel
profiling [20], etc.
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The PB equation is an elliptic interface problem with several numerical difficulties such as discontinuous dielectric coeffi-
cients, singular source, complex interface, and infinity boundary condition. Standard finite difference discretization in solving 
PB equation is efficient and robust thus popular [21–24], however it may suffer from accuracy reduction due to disconti-
nuity of the coefficients, non-smoothness of the solution, singularity of the sources, and truncation of the domains, unless 
special interface and singularity treatments are applied [25,26] at the price of more complicated discretization scheme and 
possibly reduced convergence speed in iteration. Meanwhile, boundary integral methods are effective alternatives, which 
analytically circumvent above-mentioned difficulties. In addition, due to the structures hidden in the linear algebraic system 
after the discretization of the boundary integral and molecular surface, the matrix-vector product in each iteration can be 
accelerated by fast methods such as fast multipole methods (FMM) and treecode [27,28]. Our recently developed treecode-
accelerated boundary integral (TABI) Poisson–Boltzmann solver is such an example [1] combining the advantages of both 
boundary integral equation and multipole methods. The TABI solver uses the well-posed derivative form of the Fredholm 
second kind integral equation [29] and the O (N log N) treecode [28] combined to solve the PB equation efficiently and accu-
rately. It also has advantage in memory use and parallelization [1,30]. The TABI solver has been used by many computational 
biophysics/biochemistry groups and it has been disseminated standalone or as a contributive module of the popular APBS 
software package [31,32].

A bottleneck that hinders the efficiency of the TABI solver, which only uses the simplest diagonal or Jacobi precondition-
ing is at the mesh quality for triangulating the large and complex molecular surfaces. Our numerical tests previously showed 
that although the adopted integral formulation is well-posed [29], the mesh quality for triangulating the complex molecular 
surface affects the convergence speed of GMRES [1,2]. Currently our choice of the triangular mesh generator is the MSMS 
package developed by Sanner et al. [33], which is very efficient in generating triangular meshes for given biomolecules. 
However, due to the complexity of the molecular surface, the produced triangles could be irregularly shaped e.g. small in 
size, large in angle (≈ π ), or in some other shapes which might affect the iterative convergence but cannot be filtered by 
our preprocessing subroutines. To resolve these issues, on one hand we are seeking better choices for molecular surface 
triangulation, and on the other hand we are trying to find solution to reduce the effect of mesh quality.

In the present work, we provide a newly designed preconditioning scheme, which cancels the slow-down effects caused 
by the mesh quality, while the added computational cost due to preconditioning is negligibly small. Our numerical simu-
lation shows that for many tested proteins on which the TABI solver used to converge slowly now converges rapidly with 
this update. In addition, we believe this preconditioning scheme can benefit many multipole methods accelerated bound-
ary integral Poisson–Boltzmann solvers such as [34–44]. The similar ideas can also be used to accelerate solving boundary 
integral equations from other areas such as scattering, fluids, elasticity, etc.

We next provide theories and algorithms related to the TABI solver and its preconditioning, followed by numerical results 
and discussion. This paper ends with a concluding remark section.

2. Theory and algorithms

In this section, we briefly describe the Poisson–Boltzmann (PB) implicit solvent model, review the current PB solvers, and 
introduce our recently developed treecode-accelerated boundary integral (TABI) PB solver, followed by our preconditioning 
scheme.

2.1. The Poisson–Boltzmann (PB) model for a solvated biomolecule

The PB model for a solvated biomolecule is depicted in Fig. 1(a) in which the molecular surface � separates the solute 
domain �1 from the solvent domain �2. Fig. 1(b) is an example of the molecular surface � as the triangulated surface 
of protein barnase [6]. In domain �1, the solute is represented by Nc partial charges qk located at atomic centers rk for 
k = 1, · · · , Nc , while in domain �2, a distribution of ions is described by a Boltzmann distribution and we consider a 
linearized version in this study. The solute domain has a low dielectric constant ε1 and the solvent domain has a high 
dielectric constant ε2. The modified inverse Debye length κ̄ is given as κ̄2 = ε2κ

2, where κ is the inverse Debye length 
measuring the ionic strength; κ̄ = 0 in �1 and is nonzero only in �2. The electrostatic potential φ(x) satisfies the linear PB 
equation,

−∇ · ε(x)∇φ(x) + κ̄2(x)φ(x) =
Nc∑

k=1

qkδ(x − xk), (1)

subject to continuity conditions for the potential and electric flux density on �,

[φ] = 0, [εφν ] = 0, (2)

where [ f ] = f1 − f2 is the difference of the quantity f across the interface, and φν = ∂φ/∂ν is the partial derivative in the 
outward normal direction ν . The model also incorporates the far-field boundary condition,

lim
x→∞φ(x) = 0. (3)
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