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Large eddy simulation (LES) has been increasingly used to tackle vortex-dominated 
turbulent flows. In LES, the quality of the simulation results hinges upon the quality of 
the numerical discretizations in both space and time. It is in this context we perform a 
Fourier analysis of several popular methods in LES including the discontinuous Galerkin 
(DG), finite difference (FD), and compact difference (CD) methods. We begin by reviewing 
the semi-discrete versions of all methods under consideration, followed by a fully-discrete 
analysis with explicit Runge–Kutta (RK) time integration schemes. In this regard, we 
are able to unravel the true dispersion/dissipation behavior of DG and Runge–Kutta DG 
(RKDG) schemes for the entire wavenumber range using a combined-mode analysis. In this 
approach, we take into account all eigenmodes in DG and RKDG schemes. The physical-
mode is verified to be a good approximation for the asymptotic behavior of these DG 
schemes in the low wavenumber range. After that, we proceed to compare the DG, FD, 
and CD methods in dispersion and dissipation properties. Numerical tests are conducted 
using the linear advection equation to verify the analysis. In comparing different methods, 
it is found that the overall numerical dissipation strongly depends on the time step. 
Compact difference (CD) and central FD schemes, in some particular settings, can have 
more numerical dissipation than the DG scheme with an upwind flux. This claim is then 
verified through a numerical test using the Burgers’ equation.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

According to NASA’s 2030 Vision on CFD [1], scale-resolving simulations such as large eddy simulation (LES), will be 
increasingly used to compute challenging vortex-dominated turbulent flow problems. Multiple international workshops on 
high-order CFD methods [2] have conclusively demonstrated the advantage of high-order methods over 1st and 2nd or-
der ones in accuracy/efficiency for such scale-resolving simulations due to their lower dispersion and dissipation errors. 
Interested readers can refer to several review articles on high-order methods [3–6].

It was previously shown that some upwind-biased FD schemes are too dissipative [7–10] to be a viable numerical 
approach for LES. Unfortunately, some researchers extrapolated from this to dismiss any kind of “upwinding” in numerical 
methods including DG-type methods, and argue for non-dissipative methods such as central FD schemes for LES. However, 
time integration approaches such as the Runge–Kutta (RK) scheme to introduce numerical dissipation. It is therefore very 
important to analyze the fully-discretized versions to quantify the amount of dispersion and dissipation errors. The main 
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objective of the present study is to compare the fully-discretized DG, FD and CD methods, and assess their performance for 
model equations.

In the context of LES, there is physical dissipation associated with the molecular viscosity. In addition, there is dissipa-
tion associated with the sub-grid-scale (SGS) stress, and finally there is numerical dissipation associated with the selected 
numerical method. The actual SGS stress obviously depends on the quality of the SGS model. Sometimes, the SGS stress 
provided by a model does not really correlate well with the physical SGS stress [11]. In this case, the role of the SGS model 
is to stabilize the simulation. For a central FD scheme, a dissipative SGS model is essential in achieving a successful simula-
tion. While for dissipative methods such as the DG, or CD scheme with spatial filtering, it is often not necessary to include a 
SGS model since the numerical dissipation is sufficient to stabilize the simulation. There have been overwhelming evidence 
which shows that adding a SGS model can be detrimental to the solution quality [12,10,13,14] for dissipative methods. In 
practice, implicit LES (ILES) has been shown to perform very well for a variety of flow problems [13,15–19].

In order to assess the dispersion/dissipation characteristics and resolution of a numerical scheme, Fourier analysis [20] is 
often utilized either in a semi-discrete [21–25] or fully discrete setting [26–29]. In our present work, we start with a review 
of semi-discrete schemes, and then proceed to analyze the fully discrete schemes assuming a periodic boundary condition 
for the sake of simplicity. For high-order DG-type methods, most of the previous work studied the behavior of high-order 
schemes based on what is called the physical-mode [21,22,24] defined as the one that approximates the exact dispersion 
relation for a range of wavenumbers while regarding other modes as spurious. Recently, Moura et al. [27] provided new 
interpretations on the role of spurious or secondary modes. In their work, these modes are replicates of the physical-mode 
along the wavenumber axis and they improve the accuracy of the scheme. Vanharen et al. [29] concluded that after a large 
number of iterations, high-order schemes behave in dispersion and dissipation according to the physical-mode asymptoti-
cally, for wavenumbers less than π . Nevertheless, the complete behavior of DG-type high-order schemes in dispersion and 
dissipation based on all eigenmodes has not been studied before. In this paper, we provide a first attempt to achieve this 
goal by introducing the combined-mode analysis.

Whilst there exists abundant work on the analysis of both high-order and low-order schemes or classical finite dif-
ference/finite-volume schemes, little attention was given to comparing the fully discretized DG, FD, and CD schemes of the 
same order of accuracy. The DG method, originally introduced by Reed and Hill [30] to solve the neutron transport equation, 
is chosen in this study as a representative of the high-order polynomial-based methods capable of handling unstructured 
grids including the spectral difference (SD) [31], and the flux reconstruction (FR) or correction procedure via reconstruction 
(CPR) methods [32]. LaSaint and Raviart [33] performed an error analysis for the DG method. It was then further developed 
for convection-dominated problems and fluid dynamics by many researches, see for example [34–40] and the references 
therein. In addition, the CD method of Lele [41] is also analyzed for comparison purposes. This method was further de-
veloped by Gaitonde et al. [42] and Visbal et al. [43], and applied successfully to perform ILES by Visbal et al. [44,12] and 
Rizzetta et al. [15]. Recently, a comparative study of the suitability of the method for ILES versus SGS was conducted by 
Garmann et al. [14] and San has utilized the method for an analysis of low-pass filters for the approximate deconvolution 
closure [45]. Finally, we have also included central and upwind-biased FD schemes in the present comparison to illustrate 
the performance of a fundamental classical method.

The class of FD schemes utilized in this work is usually referred to as standard FD schemes. Another interesting class of 
FD schemes is the optimized Dispersion-Relation-Preserving (DRP) [46–49] schemes for computational aeroacoustics (CAA). 
These schemes minimize the dispersion error in different norms for some low wavenumber range by changing the coeffi-
cients of the standard (FD) scheme of the same stencil. For a comparison of the relative efficiencies of the DRP schemes 
versus standard FD ones, the reader can consult the following references [50–52].

Unlike DG-type methods, CD and FD schemes need to change the discretization stencil near boundaries, which may 
suffer from instability. This problem can be remedied using spatial filters and/or numerical boundary schemes (NBS) [53]. 
Another interesting approach to ensure stability is to use schemes that satisfy the Summation-by-Parts property (SBP) see 
for example [54,55] and the references therein. It is also worth noting that connections between DG-type methods and 
the SBP property have been studied in [56,57]. In this article, we focus on the interior schemes with a periodic boundary 
condition for the sake of simplicity.

For time integration, we focus on the explicit RK [58–60] method to demonstrate the importance of analyzing the fully 
discrete version. RK schemes are easily incorporated with high-order methods such as the RKDG [35] due to their ease of 
implementation and parallelization.

In the present study, we first review the analysis of semi-discrete schemes, followed by a fully-discrete analysis for three 
classes of methods, namely, the DG, FD and CD methods. We clarify the relative efficiency and robustness of each method 
in terms of wave propagation properties. In addition, using the combined-mode analysis, we study the true dispersion/dis-
sipation properties of DG and RKDG schemes. It is verified that, at least in the low wavenumber range, the physical-mode 
(defined by Hu et al. [21]) can serve as a good approximation for the complete behavior of a high-order scheme.

This paper is organized as follows. Section 2 introduces the basic formulations of all numerical methods under consid-
eration in the present study. After that, we present a semi-discrete analysis followed by a fully discrete one in Section 3. 
Section 4 presents the comparison of dispersion/dissipation behavior of the DG, FD and CD schemes coupled with RK 
schemes. Numerical verifications and test cases are presented in Section 5. Finally, conclusions are summarized in Section 6.
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