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We develop a new data-driven closure approximation method to compute the statistical 
properties of quantities of interest in high-dimensional stochastic dynamical systems. The 
proposed framework relies on estimating system-dependent conditional expectations from 
sample paths or experimental data, and then using such estimates to compute data-
driven solutions to exact probability density function (PDF) equations. We also address 
the important question of whether enough useful data is being injected into the exact PDF 
equation for the purpose of computing an accurate numerical solution. Numerical examples 
are presented and discussed for prototype nonlinear dynamical systems and models of 
systems biology evolving from random initial states.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional stochastic dynamical systems arise naturally in many areas of engineering, physical sciences and math-
ematics. Whether it is a physical system being studied in a lab or an equation being solved on a computer, the full state 
of the system is often intractable to handle in all its complexity. Instead, it is often desirable to reduce such complexity 
by moving from a full model of the dynamics to a reduced-order model that involves only a small number of quantities of 
interest. Such quantities of interest may represent specific features of the system, e.g., the sensitivity of tumor populations 
to chemo-treatment in stochastic models tumoral cell growth [1,11], or the viscous dissipation in intertial range of fully 
developed turbulence [21,29]. The dynamics of the quantities of interest may be simpler than that of the entire system, 
although the underlying law by which they evolve in space and time is often quite complex. Nevertheless, approximation 
of such law can in many cases allow us to avoid performing simulation of the full system and solve directly for the quan-
tities of interest. In this paper, we aim at providing a new general framework to compute the probability density function 
(PDF) of such quantities of interest based on data-driven closure approximations. To introduce the methodology, consider 
the following N-dimensional nonlinear dynamical system evolving on a smooth manifold M ⊆ R

N⎧⎨
⎩

dx

dt
= G(x)

x(0) = x0

, (1)

where x0 is a random initial state with known probability density function p(x0). Non-autonomous systems driven by 
finite-dimensional (time-dependent) random noise can be always written in the form (1), by augmenting the number of 
phase variables (see, e.g., [32,2]). Suppose we are interested in the dynamics of a real-valued phase space function
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u(x) = M →R (quantity of interest). (2)

The exact dynamics of the quantity of interest (2) can be expressed as

u(x(t, x0)) = exp [tK(x0)] u(x0), K(x0) =
N∑

k=1

Gk(x0)
∂

∂x0k
, (3)

where x(t, x0) denotes the flow map [37] generated by the system (1), and exp[tK(x0)] is the Koopman operator [16,9,18]. 
Differentiation of (3) with respect to time yields

∂u(t, x0)

∂t
= G(x0) · ∇u(t, x0), u(0, x0) = u(x0), (4)

where the gradient is with respect to the variables x0. The solution to the initial value problem (4) allows to determine the 
dynamics of the quantity of interest corresponding to any initial condition x0.

Example 1.1. Setting u(x(t, x0)) = xi(t, x0) for i = 1, ..., N yields

∂x(t, x0)

∂t
= G(x0) · ∇x(t, x0), x(0, x0) = x0. (5)

This system of linear PDEs, together with the initial condition x(0, x0) = x0, allows us to compute the flow map generated 
by (1).

The dual of the Koopman operator exp(tK) with respect to the inner product

〈 f , g〉 =
∞∫

−∞
· · ·

∞∫
−∞

f (x0)g(x0)p(x0)dx0 (6)

can be written in the form exp(tL), where

L(x)φ = −∇ · (G(x)φ(x)). (7)

The operator semigroup exp(tL) is known as Frobenious–Perron (or transfer) operator. It characterizes the evolution of the 
joint PDF of the solution to (1), i.e.,

p(x, t) = etL(x) p(x,0). (8)

Differentiation of (8) with respect to time yields the well-known Liouville transport equation [27,32,33]

∂ p(x, t)

∂t
+ ∇ · (G(x)p(x, t)) = 0. (9)

Computing the numerical solution of (9) can be quite challenging due to complications with high-dimensionality, multiple 
scales, and conservation properties [20]. In fact, from a mathematical viewpoint, (9) is a hyperbolic conservation law in as 
many variables as the dimension of the system (1).

Remark 1.1. By using the method of characteristics [26], it is straightforward to obtain the following formal solution to (9)

p(x, t) = p0 (x0(x, t)) exp

⎛
⎝−

t∫
0

∇ · G (x(τ , x0))dτ

⎞
⎠ . (10)

Here, p0(x) = p(x, 0), while x0(x, t) denotes the inverse flow map generated by (1). Note that this expression provides a 
representation of the Frobenious–Perron operator semigroup (8).

This paper is organized as follows. In Section 2 we develop reduced-order PDF equations for arbitrary quantities of 
interest (2) and discuss their mathematical properties. In particular, we comment extensively on the closure problem arising 
from the dimension reduction procedure and relate it with the need of computing/estimating conditional expectations. 
In Section 3 we propose a robust procedure to compute such conditional expectations based on sample paths of (1), or 
experimental data. This opens the possibility to compute data-driven solutions to reduced-order PDF equations, and also 
estimate the memory integral arising in the Mori–Zwanzig formulation [31,38,39] (Section 5). In Section 4 we develop a 
new paradigm to measure the information content of data. Such paradigm allows us to infer, in particular, whether we 
have enough data to accurately close the reduced-order PDF equation for the quantity of interest. Finally, in Section 6
we demonstrate the proposed data-driven closure approximation method in applications to a high-dimensional nonlinear 
dynamical system and a drug resistant malaria propagation model.



Download English Version:

https://daneshyari.com/en/article/6928589

Download Persian Version:

https://daneshyari.com/article/6928589

Daneshyari.com

https://daneshyari.com/en/article/6928589
https://daneshyari.com/article/6928589
https://daneshyari.com

