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For a large class of orthogonal basis functions, there has been a recent identification 
of expansion methods for computing accurate, stable approximations of a quantity of 
interest. This paper presents, within the context of uncertainty quantification, a practical 
implementation using basis adaptation, and coherence motivated sampling, which under 
assumptions has satisfying guarantees. This implementation is referred to as Basis Adaptive 
Sample Efficient Polynomial Chaos (BASE-PC). A key component of this is the use of 
anisotropic polynomial order which admits evolving global bases for approximation in 
an efficient manner, leading to consistently stable approximation for a practical class 
of smooth functionals. This fully adaptive, non-intrusive method, requires no a priori
information of the solution, and has satisfying theoretical guarantees of recovery. A key 
contribution to stability is the use of a presented correction sampling for coherence-
optimal sampling in order to improve stability and accuracy within the adaptive basis 
scheme. Theoretically, the method may dramatically reduce the impact of dimensionality 
in function approximation, and numerically the method is demonstrated to perform well 
on problems with dimension up to 1000.

Published by Elsevier Inc.

1. Introduction

A reliable approach to analyzing complex engineering systems requires understanding how various Quantities of Interest 
(QoI) depend upon system inputs that are often uncertain; where a poor understanding will lead to poor executive decisions. 
Uncertainty Quantification (UQ) [1–3] is a field that aims at addressing these issues in a practical and rigorous manner, 
giving a meaningful characterization of uncertainties from the available information and admitting efficient propagation of 
these uncertainties for a quantitative validation of model predictions.

Probability is a natural framework for modeling uncertainty, wherein we assume uncertain inputs are represented by a 
d-dimensional random vector � := (�1, · · · , �d) with some joint probability density function f (ξ) supported on �, where 
we further assume that the coordinates of � are independent. In this manner, the scalar QoI to be approximated, here 
denoted by u(�), is modeled as a fixed but unknown function of the input. In this work we approximate u(�), assumed 
to have finite variance, by a spectral expansion in multivariate basis functions, each of which is denoted by ψk(�), and 
are naturally chosen to be orthogonal with respect to the distribution of � [4,5]. We focus here on the case that ψk are 
polynomials, a method referred to as a Polynomial Chaos (PC) expansion [1,4],
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u(�) =
∞∑

k=1

ckψk(�). (1)

We note that the independence assumption for the coordinates of � may be removed if care is taken in prescribing orthog-
onal basis functions ψk , although we do not consider any such examples here.

For computation, we allow an arbitrary number of input dimensions d but assume u can be accurately approximated in 
some relatively small set of basis functions. Let k = (k1, · · · , kd) be a vector such that ki ∈N∪ {0} represents the order of the 
polynomial ψki (�i), which is orthonormal with respect to the distribution of �i . For instance, when �i follows a uniform 
or Gaussian distribution, ψki (�i) are normalized Legendre or Hermite polynomials, respectively [4,5]. For a d-dimensional 
vector k, the d-dimensional polynomial ψk(�) is then constructed by the tensorization of ψki (�i), where ki is the ith 
coordinate of k. Specifically,

ψk(�) =
d∏

i=1

ψki (�i).

In this work we select basis functions in a manner that iteratively adjusts parameters that define a basis. Specifically, we 
consider a definition of anisotropic total order [6] using one parameter, pi , per dimension. We combine these into a vector, 
p := (p1, · · · , pd), so that an order-p basis is defined by a related set of k = (k1, · · · , kd), specifically

Bp :=
{

ψk

∣∣∣∣
d∑

i=1

ki

pi
≤ 1

}
. (2)

This basis definition has a number of parameters that scales with dimension, and which we will repeatedly modify to 
improve the quality of our polynomial approximation. We note that if all pi = p, then the order-p basis is identical to a 
total order basis of order p. We also note that this basis can have an additional hyperbolicity parameter associated with it 
as considered in [7], although we do not consider any such parameter here. Heuristically, we expect most pi to be low and 
only a few to be relatively high, allowing a basis that faithfully approximates the QoI with relatively few basis functions 
compared to a total order basis with an order that is able to achieve the same accuracy in the reconstruction. This definition 
of order allows us to adjust the working basis functions as a complete set, rather than adding or removing basis functions 
one at a time. We note that pi indicates the largest order for basis function that appears in dimension i, while the ki
indexes the order of each potential basis function. Often, the subscript on B is omitted; replaced with a scalar index related 
to iterative adjustment; or replaced with a bound on approximation error achieved in that basis; and this should not be 
confusing in context. For the remainder of this text, we refer to an order-p basis as an anisotropic order basis.

We use |B| to denote the total number of basis functions in a set B, indexed in an arbitrary manner for k = {1, · · · , |B|}, 
while the vector k specifically identifies the basis function by determining the order in each dimension. This facilitates a 
polynomial surrogate approximation to u for any basis set B, given by

u(�) ≈
|B|∑

k=1

ckψk(�). (3)

The error introduced by this truncation is referred to as truncation error, and converges to zero – in the mean squares sense 
as basis functions are added – when

ck = E(u(�)ψk(�)). (4)

Here, E denotes the mathematical expectation operator. Without any a priori information as to what B should be, we seek 
to identify B based solely on solution characteristics as revealed by computed coefficients, {ck}.

Identifying an optimal B first involves identifying a scalar quantity to optimize. In the present work, this quantity is 
related to a cross-validated error computed via �1-minimization using non-intrusive methodology [8,9]. Specifically, for a 
fixed basis, to identify the PC coefficients c = (c1, · · · , c|B|)T in (3) we consider a sampling-based method. This method does 
not require changes to deterministic solvers for u as we generate realizations of � to identify u(�), or perform a related 
importance sampling as in [10,11]. We denote the ith such realizations as ξ (i) and u(ξ (i)), respectively. We let N denote the 
number of samples of the QoI which we utilize, and define,

u := (u(ξ (1)), · · · , u(ξ (N)))T ; (5)

�(i, j) := ψ j(ξ
(i)), (6)

where we refer to � as the measurement matrix associated with B. These definitions imply the matrix equality �c = u, 
or more generally that this equality holds approximately. We also introduce a diagonal positive-definite matrix W such 
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