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This work proposes a method for model reduction of finite-volume models that guarantees 
the resulting reduced-order model is conservative, thereby preserving the structure 
intrinsic to finite-volume discretizations. The proposed reduced-order models associate 
with optimization problems characterized by a minimum-residual objective function 
and nonlinear equality constraints that explicitly enforce conservation over subdomains. 
Conservative Galerkin projection arises from formulating this optimization problem at the 
time-continuous level, while conservative least-squares Petrov–Galerkin (LSPG) projection 
associates with a time-discrete formulation. We equip these approaches with hyper-
reduction techniques in the case of nonlinear flux and source terms, and also provide 
approaches for handling infeasibility. In addition, we perform analyses that include deriving 
conditions under which conservative Galerkin and conservative LSPG are equivalent, as well 
as deriving a posteriori error bounds. Numerical experiments performed on a parameterized 
quasi-1D Euler equation demonstrate the ability of the proposed method to ensure not only 
global conservation, but also significantly lower state-space errors than nonconservative 
reduced-order models such as standard Galerkin and LSPG projection.

© 2018 Published by Elsevier Inc.

1. Introduction

The finite-volume method is commonly employed for discretizing systems of partial differential equations (PDEs) that 
associate with conservation laws, especially those in fluid dynamics. Rather than operating on the strong form of the PDE, 
the finite-volume method operates on the integral form of the PDE to numerically enforce conservation over each control 
volume comprising the computational mesh. Thus, conservation is the primary problem structure imposed by finite-volume 
discretizations; this contrasts with other discretization techniques that aim to preserve other properties, e.g., variational 
principles in the case of the finite-element discretizations.

Unfortunately, the computational burden imposed by high-fidelity finite-volume models is often prohibitive, as (1) the 
fine spatiotemporal resolution typically needed to ensure a verified, validated computational model can lead to extremely 
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large-scale models whose simulations consume months on supercomputers, and (2) many engineering problems are real time
or many queries in nature. Such problems require the (parameterized) computational model to be simulated rapidly either 
due to a strict time-to-solution constraint in the case of real-time problems (e.g., model predictive control) or due to the 
need for hundreds or thousands of simulations in the case of many-query problems (e.g., statistical inversion).

Reduced-order models (ROMs) have been developed to mitigate this burden. These techniques first perform an offline
stage during which they execute computationally costly training tasks (e.g., simulating the high-fidelity model for several 
parameter instances) to compute a low-dimensional ‘trial’ basis for the state. Next, these methods execute a computation-
ally inexpensive online stage during which they rapidly compute approximate solutions for different points in the parameter 
space by projection: they compute solutions in the span of the trial basis while enforcing the high-fidelity model resid-
ual to be orthogonal to the subspace spanned by a low-dimensional ‘test’ basis. In the presence of nonlinearities, these 
techniques also introduce ‘hyper-reduction’ approximations to ensure the cost of simulating the ROM is independent of the 
high-fidelity-model dimension.

The most popular model-reduction approach for nonlinear dynamical systems such as those arising from finite-volume 
discretizations is Galerkin projection [52,21,39], wherein the test basis is set to be equal to the trial basis. The trial ba-
sis is often computed via proper orthogonal decomposition (POD) [33], but it can also be computed via the reduced-basis 
method; see Refs. [31,32,30], which apply the classical reduced-basis method to finite-volume problems. More recently, the 
least-squares Petrov–Galerkin (LSPG) projection method [16,17,15] was proposed, which has been computationally demon-
strated to generate accurate and stable responses for turbulent, compressible flow problems on which Galerkin projection 
yielded unstable responses. Unfortunately, neither Galerkin nor LSPG projection directly preserves important problem struc-
ture related to conservation laws or finite-volume models.

To address this, alternative projection techniques have been developed for improving the performance of reduced-order 
models when applied to conservation laws, particularly those appearing in fluid dynamics. These include stabilizing inner 
products applied to finite-difference [46] and finite-element discretizations [9,36]; introducing dissipation via closure mod-
els [6,51,12,57,49] or numerical dissipation [34]; performing nonlinear Galerkin projection based on approximate inertial 
manifolds [41,50,35]; including a pressure-term representation [42,28]; modifying the POD basis by including many modes 
(such that dissipative modes are captured), changing the norm [34], enabling adaptivity [12,14], or including basis functions 
that resolve a range of scales [7] or respect the attractor’s power balance [8]; modifying the projection by adopting a con-
strained Galerkin [45,26], constrained Petrov–Galerkin [24], or L1-norm minimizing projection [1]; developing approaches 
tailored to the incompressible Navier–Stokes equations by introducing stabilizations based on supremizer-enriched velocity 
spaces and a pressure Poisson equation [54,53] or by modifying the Galerkin projection [38]; and improving the ROM’s abil-
ity to capture shocks [43,29,14,55]. Among these contributions, only a subset is applicable to finite-volume discretizations. 
Further, no model-reduction method to date has been developed to preserve the structure intrinsic to finite-volume models: 
conservation. In particular, none of the above methods ensures that conservation holds over any subset of the computational 
domain, which can lead to spurious growth or dissipation of quantities that should be conserved in principle.

To this end, this work proposes a novel projection scheme for finite-volume models that ensures the reduced-order model 
is conservative over subdomains of the problem. The approach leverages the minimum-residual formulation of both Galerkin 
and least-squares Petrov–Galerkin projection by equipping their associated optimization problems with (generally nonlinear) 
equality constraints that explicitly enforce conservation over subdomains. The resulting conservative reduced-order models 
can be expressed as the solution to time-dependent saddle-point problems. The approach does not rely on a particular 
choice of reduced basis, although the reduced basis can affect feasibility of the associated optimization problems. New 
contributions in this work include:

1. Conservative Galerkin (Section 4.2) and conservative LSPG (Section 4.3) projection techniques, which ensure that 
the reduced-order models are conservative over subdomains of the original computational mesh. These methods are 
equipped with
(a) techniques for handling infeasible constraints (Section 4.4), and
(b) hyper-reduction techniques that respect the underlying finite-volume discretization to handle nonlinearities in the 

flux and source terms (Section 4.5).
2. Analysis, which includes:

(a) demonstration that conservative Galerkin projection and time discretization are commutative (Theorem 4.3),
(b) sufficient conditions for feasibility of conservative Galerkin (Proposition 5.1) and conservative LSPG (Proposition 5.2) 

projection,
(c) conditions under which conservative Galerkin and conservative LSPG projection are equivalent (Theorem 5.1), and
(d) a posteriori bounds (Section 5.3) for the error in the quantities conserved over subdomains (Theorem 5.3), in the 

null space (Lemma 5.1) and row space (Lemma 5.2) of the constraints, in the full state (Theorem 5.2), and in the 
conserved quantities (Lemma 5.3 and Theorem 5.3).

3. Numerical experiments on a parameterized quasi-1D Euler equation associated with modeling inviscid compressible 
flow in a converging–diverging nozzle (Section 6). These experiments demonstrate the merits of the proposed method 
and illustrate the importance of ensuring reduced-order models are globally conservative.
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