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In the strong scaling limit, the performance of conventional spatial domain decomposition 
techniques for the parallel solution of PDEs saturates. When sub-domains become small, 
halo-communication and other overhead come to dominate. A potential path beyond 
this scaling limit is to introduce domain-decomposition in time, with one such popular 
approach being the Parareal algorithm which has received a lot of attention due to its 
generality and potential scalability. Low efficiency, particularly on convection dominated 
problems, has however limited the adoption of the method. In this paper we demonstrate 
trough large-scale numerical experiments that it is possible not only to obtain time-
parallel speedup on the non-linear shallow water wave equation, but also that we may 
obtain parallel acceleration beyond what is possible using conventional spatial domain-
decomposition techniques alone. Two factors were essential in achieving this. First, for 
Parareal to converge on the hyperbolic problem we used an approximate Riemann solver 
as the preconditioner. This preconditioner introduces only dissipative errors with respect 
to the 3rd order accurate WENO-RK discretization used to solve the PDE system. The 
preconditoner is comparatively expensive and convergence is slow unless time-subdomains 
are short. We therefore introduce a new scheduler that we denote Communication Aware 
Adaptive Parareal (CAAP). CAAP increases obtainable speed-up by minimizing the time-
subdomain length without making communication of time-subdomains too costly whilst 
also adaptively overlapping consecutive cycles of Parareal so to mitigate the impact of a 
relatively expensive coarse operator.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The ongoing and rapid evolution of computers used to model physical phenomenons in the computational sciences poses 
new challenges for algorithms. The growing number of cores, the increasingly convoluted cache hierarchies, and the use of 
accelerators all seek to boost the computational capacity of individual nodes. At the same time, the number of compute 
nodes in distributed memory machines has increased dramatically. The machine that currently crowns the top500 list of su-
percomputer Sunway TaihuLight at NSCC Wuxi, China, has more than 40.000 compute nodes, comprising a total of more than 
10 millions cores [10]. This ongoing development towards increasing hardware parallelism exposes algorithmic shortcomings 
and requires a rethinking of the fundamental algorithms to maintain scalability and enable efficient use of the computing 
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platform [9]. In this paper we show how the Parareal method may be modified in such a way as to allow for parallel-in-time 
acceleration of a tsunami simulation beyond what is possible using conventional spatial domain-decomposition techniques 
alone. The underlying PDE governing the dynamics of the model is the shallow water wave equation. The equation is a 
purely hyperbolic system of coupled non-linear PDEs, the solutions of which typically contain both shocks and smooth re-
gions interacting in a non-trivial manner. We thus conjecture that the positive result, presented in section 6, is an indication 
that it is possible for other similar systems to benefit from parallel-in-time acceleration.

1.1. Time-domain parallelism and Parareal

Solving time dependent PDEs is often done in a methods-of-line approach where the spatial components are discretized 
in some appropriate manner and a numerical integration technique is applied to advance in time. The approach extends 
to distributed memory machines by applying some form of domain decomposition, letting independent nodes communi-
cate boundary information of their local sub-domains. The limitation to the approach lies in the strong scaling limit, i.e. 
increasing the number of nodes for a fixed problem size to achieve a reduction in time to compute.

One might naively suspect that one may “run out of parallelism” – i.e. as the combined number of cores become suffi-
ciently high, there are simply not enough parallel degree’s of freedom for all cores to work all the time. But consider this, 
solving a problem with upwards of a billion degree’s of freedom in space may today be done on a potent workstation. 
Conversely, even the largest clusters available for researchers in the world has no more than a few million cores, everything 
included. This scaling limit is therefore somewhat theoretical, and not yet of much relevance for practitioners. So why does 
obtainable speed-up saturate in the strong-scaling limit? Consider what happens as spatial sub-domains decrease in size, 
given a three dimensional domain in space divided into a number of quadratic sub-domains with n elements spanning 
each dimension. The compute work in each sub-domain is proportional to n3. The boundary information that needs to be 
exchanged with neighboring sub-domains is proportional to ∼n2. As n → 1, compute nodes will increasingly be spending 
time communicating boundary information rather than computing.

This particular limit is very much of practical concern. Moving a double between two individual compute nodes in a 
cluster is many orders of magnitude more expensive than a compute operation in terms of both wall-time and energy 
consumption. On large machines comprising thousands of nodes, this is a substantial bottleneck for scaling application effi-
ciently and new algorithmic developments are required. A potential new path in obtaining scaling beyond what is possible 
with conventional methods, is to extract parallelism in the time integration procedure. Once a system of partial differential 
equation has been reduced to a large system of ordinary differential equations to be integrated over time, the problem is 
usually viewed as a sequential process. However, many attempts to extract parallelism do exists. For a complete overview 
of research in the direction we refer to a recent paper [12].

The focus of this paper will be on the Parareal method that has received a lot of attention over the past decade. The 
Parareal method, first proposed in [17], borrows from ideas in spatial domain decomposition to construct an iterative ap-
proach for solving the temporal problem in a parallel global-in-time approach. To present the method, consider a problem 
on the form{

du
dt +A (t,u) = 0

u (T0) = u0 t ∈ [T0, T ]
(1)

where A : R × V → V ′ is a general operator depending on u : � × R
+ → V with V being a Hilbert space and V ′ its dual. 

Now, assume there exists a unique solution u (t) to (1) and decompose the time domain into nt individual time slices

T0 < T1 < · · · < Tnt−1 < Tnt = T . (2)

Let Tn = n�T . We now define a numerically accurate solution operator F�T that, for any t > T0, advances the solution as

F�T (Tn,u (Tn)) = UTn+�T ≈ u (Tn + �T ) (3)

To solve (1) on [T0, T0 + nt�T ], define the matrix of operators MF

MF =

⎡
⎢⎢⎢⎢⎢⎣

1

−F T0
�T

. . .

. . .
. . .

−F Tnt −1
�T 1

⎤
⎥⎥⎥⎥⎥⎦ (4)

with Ū = [U0, . . . ,Unt

]
and Ū0 = [u (T0) ,0, . . . ,0]. The sequential solution procedure is then equivalent to solving

MF Ū = Ū0 (5)

by forward substitution for Ū so to recover U0 · · ·Unt as approximations to u(T0) · · ·u(Tnt ). If we instead seek to solve 
the system using a point-iterative approach, i.e., we seek the solution Ūk+1 = Ūk + (Ū0 − MF Ūk

)
, we observe that at the 
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