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Computing statistical quantities of interest of the solution of partial differential equations 
on random domains is an important and challenging task in engineering. We consider 
the computation of these quantities by the perturbation approach. Especially, we discuss 
how third order accurate expansions of the mean and the correlation can numerically 
be computed. These expansions become even fourth order accurate for certain types of 
boundary variations. The correction terms are given by the solution of correlation equations 
in the tensor product domain, which can efficiently be computed by means of H-matrices. 
They have recently been shown to be an efficient tool to solve correlation equations with 
rough data correlations, that is, with low Sobolev smoothness or small correlation length, 
in almost linear time. Numerical experiments in three dimensions for higher order ansatz 
spaces show the feasibility of the proposed algorithm. The application to a non-smooth 
domain is also included.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solution of strongly elliptic linear partial differential equations (PDEs) is an important task in science and 
engineering. It is nowadays well understood and can be accomplished up to high accuracy, provided that the input data are 
known exactly. Motivated by tolerances in manufacturing processes and measurement errors, the computation of statistical 
output functionals of the solution of PDEs on objects with uncertain shapes has recently gained a lot of interest. The 
domain mapping approach, see, e.g., [1–3], is well suited for modeling large variations in the domain, but usually leads to 
high-dimensional and costly integration problems, which suffer from the curse of dimensionality. The perturbation approach, 
see, e.g., [4–7], is motivated by small disturbances in manufacturing processes and models uncertain small deformations 
under the following view point. Notice that both approaches have recently been combined in [8].

Given a reference domain D0, the random domains Dε(ω) are defined by the perturbation of the reference domain’s 
boundary in some ε tube, leading to the model problem

�uε(ω) = 0 in Dε(ω),

uε(ω) = g on ∂ Dε(ω).
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Using shape calculus, cf. [9,10], and under some smoothness assumptions, the non-linear dependence of the solution uε(ω)

on Dε(ω) can, in a suitable compact subdomain K , be expanded in a Taylor expansion in ε, i.e.,

uε(ω) = u0 + εδu(ω) + ε2

2
δ2u(ω) +O(ε3) in K . (1)

The zero order term u0 can directly be computed by solving the deterministic PDE

�u0 = 0 in D0,

u0 = g on ∂ D0,

on the unperturbed domain. The first and second order correction terms can be computed by solving the very same equation 
as for the zero order term, but with different boundary conditions.

Based on the Taylor expansion (1), statistical quantities of the solution like the mean

E[uε] = u0 + εE[δu] + ε2

2
E[δ2u] +O(ε3) in K ,

the covariance

Cov[uε] = ε2 Cor[δu] +O(ε3) in K × K ,

and the correlation

Cor[uε] = u0 ⊗ u0 + ε
(

u0 ⊗E[δu] +E[δu] ⊗ u0

)
+ε2 Cor[δu]

+ε2

2

(
u0 ⊗E[δ2u] +E[δ2u] ⊗ u0

)
+O(ε3) in K × K

can be expanded into asymptotic expansions in ε. It has already been shown in [7] that the second order correction term 
Cor[δu] is the solution to a correlation equation in the higher-dimensional product domain D0 × D0. While the first and 
second order correction terms E[δu] and E[δ2u] of the mean are given as the solution of PDEs on D0, the computation of 
the boundary values for E[δ2u] has not been investigated yet. We show that they can likewise be obtained by the solution 
of a correlation equation, but in the product domain ∂ D0 × ∂ D0. As this equation lives solely on the domain boundary, 
the boundary element method is an obvious discretization method for its solution. Hence, we will use it as a discretization 
scheme for all occurring equations, omitting the meshing of D0. We provide the full convergence analysis for the proposed 
discretization scheme and slightly relax the assumptions from [7] on the boundary perturbations on our way. Additionally, 
we remark that the asymptotics can even be up to fourth order accurate, if the law of the prescribed boundary variations 
behaves in a specific way.

We therefore have to solve two correlation equations in the tensor product domain in order to compute third order 
accurate approximations in the perturbation amplitude ε. As a naive discretization of these higher dimensional problems, 
also referred to as the full tensor approach, is prohibitively expensive, the solution of such correlation equations has been 
the topic of several articles, cf. [5,7,11–15] for example. Except for [5,12], where a low-rank approximation of the underlying 
correlation is employed, all of the mentioned approaches rely in some sense on a sparse tensor approximation. Both, low-
rank approximations and sparse tensor discretizations, are best suitable if the prescribed correlation is sufficiently smooth, 
compare [16,17] for the behavior of low-rank approximations in dependence of the smoothness, and are known to struggle 
for “rough” correlations. This means that the prescribed correlation exhibits only minor smoothness assumptions or has a 
high concentration of measure. While rough correlations do not necessarily have an influence on the convergence rates ([18]
discusses an specific example where the rate is reduced), they may have a huge influence on the constants involved in the 
complexity estimates.

Recently, the hierarchical matrix approach (in short H-matrix approach) to correlation equations, cf. [18–20], has been 
shown to be a promising approach to cope with rough correlations. In the context of correlation equations, H-matrices pro-
vide an alternative compression scheme to represent the full tensor product approach and allow the solution of correlation 
equations in almost linear time. Being introduced in [21,22], H-matrices are feasible for the data-sparse representation of 
(block-) matrices which can be approximated block-wise with low-rank. They have originally been employed for the efficient 
treatment of boundary integral equations, as they arise in the boundary element method. Nonetheless, they also provide an 
arithmetic which can be employed for the solution of matrix equations, as they occur from the discretization of correlation 
equations.

The rest of this article is organized as follows. In Section 2, we derive expansions of the mean, the covariance, and 
the correlation with respect to the perturbation’s amplitude via shape calculus. Section 3 is concerned with the necessary 
boundary integral equations to allow for a natural treatment of the random perturbations of the boundary. In Section 4, 
we introduce the corresponding Galerkin discretization, whereas Section 5 is concerned with its error estimation. Section 6
is concerned with the efficient treatment of the derived equations with H-matrices. We demonstrate the feasibility of the 
proposed approach by numerical experiments in three spatial dimensions in Section 7. Finally, in Section 8, we draw our 
conclusions.
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