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Spectral methods are becoming increasingly prevalent in solving time-varying partial 
differential equations due to their fast convergence properties. However, they typically 
use regular computational meshes that do not account for spatially varying resolution 
requirements. This can significantly increase the overall grid density when resolution 
requirements vary sharply over the modelled domain. Moving mesh methods offer a 
remedy for this, by allowing the position of mesh nodes to adapt to the simulated model 
solution. In this paper, a mesh specification is presented that is based on a local measure 
of the spatial bandwidth of the model solution. This addresses the rate of decay of 
the model solution’s frequency components by producing high-sampling rates when this 
decay is slow. The spatial bandwidth is computed using a combination of the original 
solution and its Riesz transformed counterparts. It is then integrated into a Fourier spectral 
moving mesh method, using the parabolic Monge–Ampère equation for mesh control. This 
method is used to solve a multidimensional version of the viscous Burgers equation, and a 
heterogeneous advection equation. The performance of bandwidth-based mesh adaptation 
is compared with arclength- and curvature-based adaptation, and against a static mesh. 
These numerical experiments show that the bandwidth-based approach produces superior 
convergence rates, and hence requires fewer mesh nodes for a given level of solution 
accuracy.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Spectral methods are increasingly being used for the numerical solution of differential equations [1]. To do this, they 
use globally-defined basis functions and, when compared with low-order, local methods, often produce high accuracy with 
relatively coarse spatial discretisations [2]. The sampling rate for spectral methods is related to the rate of decay of the so-
lution’s frequency components: functions that vary rapidly require denser sampling than those that vary more smoothly [1]. 
To meet these sampling requirements, spectral meshes typically used fixed, standardised meshes whose spacing is chosen 
to ensure that some maximum frequency component is supported. For example, the Fourier collocation method is usually 
applied using equispaced meshes whose spacing ensures at least two points per minimum wavelength of interest—a choice 
arising from the Shannon–Nyquist sampling theorem. Any frequency components beyond this will not be supported by the 
mesh. For many problems of interest, spatial resolution requirements are not uniform throughout the simulated domain. 
For example, in [3–5] a Fourier collocation method was used to simulate high-intensity focussed ultrasound fields. These 
contain tightly localised shock fronts that require dense computational meshes, but most of the field only has power at low 
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frequencies. As the meshes used in those works were uniform, the strict shock front sampling requirement was applied ev-
erywhere, and large-scale, high-performance computing resources were needed to store and process field variables at each 
time-step.

To accommodate varying resolution requirements, spectral methods can be implemented within a moving mesh method 
framework [6]. These dynamically adapt mesh node positions throughout a simulation in a solution-dependent manner. 
This allows both temporally- and spatially-varying resolution requirements to be met. Monitor functions are used to link 
the model solution to the mesh, and hence guide mesh adaptation. The choice of monitor function is critical to the per-
formance of moving mesh methods. There have been a number of past multidimensional spectral moving mesh methods, 
including Fourier, Galerkin, and Chebyshev types [7–11]. These all used arclength-like monitor functions that cluster mesh 
nodes where the gradient of the model solution is large. In all cases, these methods were applied to problems whose 
solutions were characterised by steep fronts, and so it is unsurprising that gradient-based mesh adaptation was effective. 
However, many problems include features for which gradient-based adaptation is not an obvious choice and, additionally, 
gradient-based mesh adaptation has not been theoretically justified in the context of spectral methods.

A mesh adaptation approach that is tailored to spectral collocation methods was presented in [12] and applied with 
success to one-dimensional problems. It used a high-pass filter to find regions with large high-frequency solution compo-
nents, and increased the mesh node density there accordingly. A weakness of this method is that the high-pass filtering 
step requires parameter choices that are problem- and interpolant-specific. Following this, the (spatially) local bandwidth 
was presented as a parameterless and robust approach to frequency-based mesh adaptation, and applied to a variety of 
one-dimensional acoustics problems [13]. In that work, the bandwidth measured the local rate of decay of the solu-
tion’s frequency components, and the sampling density was chosen to be proportional to its reciprocal. When compared 
with arclength-based mesh adaptation, the bandwidth-based approach considerably improved the convergence rates of 
Chebyshev, Fourier, and even finite-difference methods. However, the algorithm presented in that work is limited to one-
dimensional problems, as it uses the analytic signal to decouple the spatial phase and amplitude of the model variable.

This paper introduces a multidimensional bandwidth-based mesh adaptation method. It works by first decoupling the 
spatial phase and amplitude of the model solution using the monogenic signal [14,15]. From this, the local bandwidth of the 
solution is computed and used as a specification for mesh adaptation. This specification is integrated into a Fourier spectral 
moving mesh method, and assessed against arclength- and curvature-based mesh adaptation. To do so, a multidimensional 
viscous Burgers equation and a heterogeneous advection equation are used to simulate the formation and propagation of a 
shock front and a sharp peak.

2. Bandwidth-based mesh adaptation

2.1. Multidimensional local bandwidth

To optimally sample a function using a nonuniform grid, the (spatially-varying) spatial frequency content of that function 
can be used. Specifically, for a band-limited function the local sampling rate should reflect the maximum spatial frequency 
present at that point [16]. For functions that are not band-limited, the local sampling rate should similarly reflect the rate 
at which local spatial frequencies decay. In this regard, the local bandwidth has been shown to be an effective measure of 
this decay for one-dimensional mesh adaptation [13].

To perform local, multidimensional spatial frequency analysis, it is useful to consider the monogenic signal [14]. This 
is a multidimensional generalisation of the analytic signal, which contains the original signal as one component and a 
quadrature signal as the other. By augmenting the original signal, the monogenic signal decouples the local amplitude and 
phase, making local frequency analysis more straightforward. Given a d-dimensional scalar field u, the monogenic signal 
can be written as a vector field v with d + 1 components consisting of the original scalar field and its Riesz-transformed 
counterparts

v = (
u R1u · · · Rdu

)T
.

Here, the Riesz transform R j is defined in Fourier-space by

R ju = F−1
{
− ik j

‖k‖F{u}
}

, (1)

where i is the imaginary unit, F is the Fourier transform, k is a vector-field of wavenumbers corresponding to x, and j
indicates the coordinate axis. Now let V(k) be the Fourier transform of v(x), and assume without loss of generality that∫

Rd

‖V‖dk = 1.

Then, the square of the global spatial bandwidth B j aligned with coordinate axis j is defined as the expected value of k2
j . 

That is,
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