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Newly developed reconstructed Discontinuous Galerkin (rDG) methods are presented for 
solving linear advection–diffusion equations on hybrid unstructured grids based on a 
first-order hyperbolic system (FOHS) formulation. Benefiting from both FOHS and rDG 
methods, the developed hyperbolic rDG methods are reliable, accurate, efficient, and robust, 
achieving higher orders of accuracy than conventional DG methods for the same number of 
degrees-of-freedom. Superior accuracy is achieved by reconstruction of higher-order terms 
in the solution polynomial via gradient variables introduced to form a hyperbolic diffusion 
system and least-squares/variational reconstruction. Unsteady capability is demonstrated by 
an L-stable implicit time-integration scheme. A number of advection–diffusion test cases 
with a wide range of Reynolds numbers, including boundary layer type problems and 
unsteady cases, are presented to assess accuracy and performance of the newly developed 
hyperbolic rDG methods. Numerical experiments demonstrate that the hyperbolic rDG 
methods are able to achieve the designed optimal order of accuracy for both solutions 
and their derivatives on regular, irregular, and heterogeneous grids, indicating that the 
developed hyperbolic rDG methods provide an attractive and probably an even superior 
alternative for solving the linear advection–diffusion equations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, the discontinuous Galerkin (DG) methods, originally developed for solving the steady neutron transport [1]
and unsteady advection problems [2], have shown increasing attention in science and engineering field for solving con-
servation laws. They are widely used in computational fluid dynamics (CFD), computational acoustics, and computational 
magneto-hydrodynamics. By combining the advantages of the finite element (FE) and finite volume (FV), DG methods, one 
can achieve high order accuracy while retaining the compactness of the stencil. Meanwhile, DG methods are especially suit-
able for hyperbolic-type systems of equations in terms of solution accuracy [3–7], treatment of non-conforming meshes [8], 
and implementation of the hp-adaptivity [9]. However, the DG methods have a number of their own weaknesses. In partic-
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ular, how to reduce the computing costs for the DG methods, and how to discretize and efficiently solve elliptic/parabolic 
equations remain two unresolved and challenging issues in the DG methods.

In order to reduce both computational costs and storage requirements of DG methods, a new family of reconstructed DG 
methods, termed PnPm schemes, referred to as rDG(PnPm) in this paper, was introduced by Dumbser et al. [10–12]. Here, 
Pn indicates that a piecewise polynomial of degree of n is used to represent an underlying DG solution, and Pm represents 
a reconstructed polynomial solution of degree of m (m ≥ n) that is used to compute the fluxes and source terms. Note 
that the rDG(PnPm) schemes provide a unified formulation for both FV and DG methods, and contain both classical FV and 
standard DG methods as two special cases of rDG(PnPm) schemes. Obviously, the construction of an accurate and efficient 
reconstruction operator is crucial to the success of the rDG(PnPm) schemes. In Dumbser’s work [10–12], a higher order 
polynomial solution is reconstructed using a L2 projection, requiring it indistinguishable from the underlying DG solutions 
in the contributing cells in the weak sense. The resultant over-determined system is then solved using a least-squares 
method that guarantees exact conservation, not only of the cell averages but also of all higher order moments in the 
reconstructed cell itself, such as slopes and curvatures. However, this conservative least-squares reconstruction approach 
is computationally expensive, as the L2 projection, i.e., the operation of integration, is required to obtain the resulting 
over-determined system. Furthermore, the reconstruction might be problematic for a boundary cell, where the number 
of the face-neighboring cells might be not enough to provide the necessary information to recover a polynomial solution 
of a desired order. Fortunately, the projection-based reconstruction is not the only way to obtain a polynomial solution 
of higher order from the underlying discontinuous Galerkin solutions. In a reconstructed DG method using a Taylor basis 
developed by Luo et al. [13–16] for the solution of the compressible Euler and Navier–Stokes equations on arbitrary grids, 
a higher order polynomial solution is reconstructed by use of a strong interpolation, requiring point values and derivatives 
to be interpolated on the face-neighboring cells. The resulting over-determined linear system of equations is then solved 
in the least-squares sense. This reconstruction scheme only involves von Neumann neighborhood, and thus is compact, 
simple, robust, and flexible. Like the projection-based reconstruction, the strong reconstruction scheme guarantees exact 
conservation, not only of the cell averages but also of their slopes due to a judicious choice of the Taylor basis. The latest 
hierarchical WENO-based rDG(PnPm) schemes [17,18] are designed not only to reduce the high computing costs associated 
with DG methods, but also to avoid spurious oscillations in the vicinity of strong discontinuities.

Indeed, DG methods are natural choices for solving hyperbolic systems, such as the compressible Euler equations. How-
ever, when it comes to elliptic or parabolic equations, such as the compressible Navier–Stokes equations, the DG formulation 
is far less certain and advantageous. Approaches made to resolve this issue could be found in the literature [5,14,19–28]. 
Those methods have introduced in some way the influence of the discontinuities in order to define correct and consistent 
diffusive fluxes. Unfortunately, all these methods seem to require substantially more computational effort than the classi-
cal continuous finite element methods, which are naturally more suited for the discretization of elliptic problems. There is 
also an approach where a scalar diffusion scheme is derived from a hyperbolic diffusion formulation [29,30]. It has been 
extended to higher-order in the context of the residual-distribution method [31], but has not been extended in the DG 
methods beyond second-order.

Over the last several years, an alternative approach to viscous discretizations, which reformulates the viscous terms as a 
first-order hyperbolic system (FOHS), was developed by Nishikawa [32–36], Nishikawa and Roe [37], Nakashima et al. [38], 
Liu and Nishikawa [39], Mazaheri and Nishikawa [40], Montecinos and Toro [41], Montecinos et al. [42], Toro and Mon-
tecinos [43], and Ahn et al. [44]. Note that the approaches in the references [41–43], present explicit ADER schemes for 
hyperbolic-diffusion systems with Lr , a free parameter defined as relaxation length, of O(h) rather than O(1). In their ap-
proach Lr (or Tr , another parameter as relaxation time) needs to depend on the mesh size in order to preserve the designed 
order of accuracy with explicit time stepping. Thus, their approach is different from the hyperbolic approach we present 
and discuss here. In the FOHS formulation, by including derivative quantities as additional variables, the equations are first 
formulated as a first order system (FOS). Then, it is rendered to be hyperbolic, which is the distinguished feature of the 
FOHS method from other FOS methods, by adding pseudo time derivatives to the first-order system. It thus generates a sys-
tem of pseudo-time evolution equations for the solution and the derivatives in the partial differential equation (PDE) level, 
not in the discretization level as in DG methods. The hyperbolic reformulation in the PDE level would allow a dramatic sim-
plification in the discretization as the well-established methods can be directly applied to the viscous terms. Moreover, the 
presented hyperbolic approach is not targeted at addressing stiff source terms already present in the original formulations. 
The approach introduces source terms which are not stiff for typical hyper-Re problems of small ν since Tr = O(1/ν), in 
contrast to the hyperbolic approach used in Toro’s work [43] where Tr = O(ν). The FOHS method is especially attractive in 
the context of the DG methods since it allows the use of inviscid algorithms for the viscous terms and thus greatly simpli-
fies the discretization of the compressible Navier–Stokes equations. Moreover, the FOHS method yields a numerical scheme 
that can achieve the same order of accuracy in the solution and its derivatives on irregular grids and high-quality noise-free 
gradients on such grids. This is a very important feature for unstructured-grid viscous simulations, where target quantities 
are derivatives, e.g., viscous stresses and heat fluxes.

A challenge in combining the DG method and the FOHS method lies in a very large number of discrete unknowns arising 
from both methods. For a scalar equation in two dimensions, the FOHS method introduces two derivatives as additional 
variables, and a DG(P1) method introduces three degrees of freedom (DoFs) for each variable (solution, and two derivatives), 
resulting in the total of nine degrees of freedom. In 2015, the fourth author noticed that these degrees of freedom can 
be significantly reduced by unifying inter-related high-order moments of the derivative variables and extending the idea 
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