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Numerical schemes for scalar transport and mixing in turbulent flows must be high-order 
accurate, and observe conservation and boundedness constraints. Discretization accuracy 
can be evaluated from the truncation error, and assessed by its dispersion and dissipation 
properties. Dispersion errors can cause violation of physical scalar bounds, whereas 
numerical dissipation is key to mitigating those violations. Numerical dissipation primarily 
alters the energy at small scales that are critical to turbulent mixing. Influence of additional 
dissipation on scalar mixing in large-eddy simulations (LES) of incompressible temporally 
evolving shear flow is examined in terms of the resolved passive-scalar field, Z̄ . Scalar 
fields in flows with different mixing behavior, exhibiting both uniform and non-uniform 
mixed-fluid composition across a shear layer, are compared for different grid resolutions, 
subgrid-scale models, and scalar-convection schemes. Scalar mixing is assessed based 
on resolved passive scalar probability density function (PDF), variance, and spectra. The 
numerical-dissipation influence on mixing is found to depend on the nature of the flow. 
Mixing metrics sensitive to numerical dissipation are applied to examine the performance 
of limiting methods employed to mitigate unphysical scalar excursions. Two approaches, 
using a linear-scaling limiter for finite-volume schemes and a monotonicity-preserving 
limiter for finite-difference schemes, are studied. Their performance with respect to 
accuracy, conservation, and boundedness is discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Passive or active scalar transport and mixing by turbulent flow is important in numerous engineering and scientific 
applications (e.g., [1–3] and references therein). Grid-resolution requirements and the resulting computational cost of sim-
ulations of high Reynolds- and Schmidt-number flows, where a wide range of spatial and temporal scales determine scalar 
mixing, place a direct calculation of all scales out of reach. Moreover, for high Schmidt numbers (Sc), the Batchelor scale 
(ηB � η Sc− 1

2 ) is smaller than the Kolmogorov scale (η), and a finer grid is required to fully resolve the scalar field than 
the velocity field. Large-eddy simulations (LES) lower the computational cost by modeling dynamic effects, on the resolved 
flow field, of spatial scales smaller than a cutoff wavenumber, while directly calculating the larger scales of motions [4,5]. 
However, such modeling introduces subgrid-model errors in addition to numerical-discretization errors. Model errors are 
difficult to quantify without a corresponding direct numerical simulation (DNS) solution, which is usually out of reach for 

* Corresponding author.
E-mail address: nsharan @caltech .edu (N. Sharan).

https://doi.org/10.1016/j.jcp.2018.05.005
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.05.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:nsharan@caltech.edu
https://doi.org/10.1016/j.jcp.2018.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.05.005&domain=pdf


N. Sharan et al. / Journal of Computational Physics 369 (2018) 148–172 149

practical problems of engineering interest. Therefore, analyses of the interaction between the model and numerical errors 
are typically restricted to canonical flows at low to moderate Reynolds number [6–9]. Several studies have examined the 
role of the filter-grid ratio �/�x [8,10–12], where � is the filter width and �x is the grid spacing, and the discretization 
of the non-linear term [13,14] in LES to keep numerical errors smaller than subgrid-scale (SGS) model contributions. These 
references and others (e.g., [15,16]) study effects of LES model and numerical errors on the velocity field. In this work, 
effects of numerical-dissipation errors on a convected passive-scalar field, specifically on scalar boundedness and resolved 
and subgrid scalar-mixing estimates, are examined.

For uniform-density and uniform-diffusivity flow, the passive-scalar field, Z , is governed by the advection–diffusion equa-
tion

∂ Z

∂t
+ u j

∂ Z

∂x j
= D

∂2 Z

∂x2
j

, (1)

where u j is the velocity and D denotes the diffusivity, here assumed to be uniform in space. Solutions to (1) obey the 
maximum principle, i.e., solution extrema can only occur at the (spatial or temporal) boundary, bounding Z by its initial 
and boundary values.

In practice, numerical solutions to (1) obtained from a high-order finite-difference/-volume method incur dispersion 
errors that may result in violations of the maximum principle. The high-wavenumber content of the solution is more 
susceptible to dispersion (phase-speed) errors, which are of concern to LES since such calculations are, by definition, under-
resolved with higher energies at grid scale than if the flow were fully resolved.

If the SGS model does not provide adequate dissipation for a sufficiently smooth scalar field, dispersive oscillations can 
produce unphysical scalar excursions [17]. These excursions are commonly mitigated using upwind schemes [18,19], or 
bound-preserving limiters [20,21], both of which introduce artificial dissipation and can lower the accuracy of numerical 
solutions.

In this study, our aim is two-fold: (1) Examine the effect of numerical dissipation on mixed-fluid composition and scalar 
fluctuations in different mixing regimes of turbulent shear flows to identify flow statistics sensitive to additional dissipation. 
Mixed-fluid composition is assessed from scalar PDFs whereas scalar fluctuations from their second central moment, the 
variance. (2) Use flow statistics sensitive to additional dissipation to assess the numerical dissipation introduced by two 
limiting procedures, using the linear-scaling limiter of [22,23] and the monotonicity-preserving limiter of [24], to enforce 
scalar boundedness.

From among the desirable properties of high-order accuracy, conservation, and boundedness, numerical schemes gener-
ally satisfy the former two properties but do not strictly impose the third. To enforce scalar boundedness, commonly-used 
approaches compromise either accuracy, for example with bound-preserving low-order schemes [18,19,21], or conservation, 
with semi-Lagrangian schemes employing bounded interpolation [20]. In this work, limiting approaches for incompressible-
flow simulations that ensure scalar boundedness and conservation while preserving uniform high-order accuracy are dis-
cussed.

Liu & Osher [22] developed a linear-scaling limiter for scalar-conservation laws that was adapted to ensure bounded-
ness with uniform high-order accuracy by Zhang & Shu [23] for finite-volume and discontinuous-Galerkin discretizations. 
The limiter was used in combination with a first-order scheme by Subbareddy et al. [21] to mitigate scalar excursions in 
compressible-flow simulations with finite-volume schemes. For incompressible-flow computations, a velocity reconstruction 
consistent with the incompressibility condition ensures boundedness without the need of incorporating a low-order scheme, 
thus ensuring a uniform high-order accuracy. Such reconstructions are shown in this paper for a velocity field calculated 
from the non-dissipative schemes of Morinishi et al. [25]. However, the limiting approach of [22,23] cannot be applied to 
finite-difference schemes, which led us to explore the application of the monotonicity-preserving limiter of Suresh & Huynh 
[24] to enforce scalar boundedness with finite-difference schemes. Numerical dissipation introduced by each methodology 
is assessed based on scalar-mixing estimates in a canonical turbulent shear flow.

In Section 2.1, the LES governing equations and the SGS models used in this study are discussed. The evolution of scalar 
fields with initial conditions leading to different mixing behavior in the temporally evolving shear flow is discussed in Sec-
tion 2.2. Limiting approaches to mitigate unphysical scalar excursions in incompressible-flow simulations are discussed in 
Section 3. Several convection schemes with different dissipation and boundedness properties are examined and listed in 
Section 4.1 along with their global scalar-excursion statistics. The effect of numerical-dissipation errors on scalar-mixing es-
timates is examined in Section 4.2. Scalar boundedness and numerical dissipation introduced by the limiting methodologies 
of Section 3 is assessed in Section 4.3.

2. Flow description

2.1. Governing equations and SGS models

For LES, the conservation equations are assumed to be spatially filtered using a kernel G(x; �), where � is the filter 
width, and a filtered (or resolved) quantity f̄ (x, t) is obtained by convolution of f (x, t) with G(x; �) [26]. An explicit con-
volution calculation is computationally expensive [11] and, in practice, the computational grid typically serves as the spatial 
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