
Journal of Computational Physics 367 (2018) 374–390

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A normalized gradient flow method with attractive–repulsive 

splitting for computing ground states of Bose–Einstein 

condensates with higher-order interaction

Xinran Ruan

Department of Mathematics, National University of Singapore, Singapore 119076, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2017
Received in revised form 26 March 2018
Accepted 19 April 2018
Available online 26 April 2018

Keywords:
Bose–Einstein condensate
Higher order interaction
Modified Gross–Pitaevskii equation
Ground state
Normalized gradient flow
Attractive–repulsive splitting

In this paper, we generalize the normalized gradient flow method to compute the ground 
states of Bose–Einstein condensates (BEC) with higher order interactions (HOI), which is 
modeled via the modified Gross–Pitaevskii equation (MGPE). Schemes constructed in naive 
ways suffer from severe stability problems due to the high restrictions on time steps. To 
build an efficient and stable scheme, we split the HOI term into two parts with each 
part treated separately. The part corresponding to a repulsive/positive energy is treated 
semi-implicitly while the one corresponding to an attractive/negative energy is treated 
fully explicitly. Based on the splitting, we construct the BEFD-splitting and BESP-splitting 
schemes. A variety of numerical experiments show that the splitting will improve the 
stability of the schemes significantly. Besides, we will show that the methods can be 
applied to multidimensional problems and to the computation of the first excited state 
as well.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Bose–Einstein condensate (BEC), which is a many body system with low density and low temperature, has drawn 
great attention since its first experimental realization in 1995 [1,18,26] as it offers a way to measure the microscopic 
quantum mechanical properties in a macroscopic scale. The Gross–Pitaevskii equation (GPE), which is a mean field approx-
imation by approximating the interaction between particles by an external pseudo-potential [30,32,33,35,36], has gained 
considerable research interest due to its simplicity and effectiveness in describing Bose–Einstein condensates (BEC). One key 
assumption in deriving GPE is that the interaction between particles can be well approximated by the binary interaction in 
the form

V int(x1 − x2) = g0δ(x1 − x2), x1,x2 ∈R
3, (1.1)

where δ(·) is the Dirac delta function and g0 = 4π h̄2as
m is the contact interaction strength with as being the s-wave scattering 

length, h̄ being the reduced Planck constant and m being the mass of the particle [32]. The theory has shown excellent 
agreement with most experiments. However, the validity of the approximation needs to be carefully examined in certain 
cases, such as in the experiments which take advantage of the Feshbach resonances in cold atomic collision [47]. In such 
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cases, higher order interaction (HOI) (or effective range expansion) as a correction to the Dirac delta function has to be 
taken into account. In [23,27], the higher order interaction correction is analyzed and a new binary interaction is derived as

V int(z) = g0

[
δ(z) + g1

(
δ(z)∇2

z + ∇2
z δ(z)

)]
, (1.2)

where g0 is defined as before, z = x1 − x2 ∈ R
3 and the HOI correction is given by the parameter g1 = a2

s
3 − asre

2 with re

being the effective range of the two-body interaction. When re = 2
3 as , it is for the hard sphere potential and reduces back 

to the classical case. In certain cases, g1 can be extremely large [47] and, therefore, the HOI can no longer be ignored. With 
this new choice of the binary interaction (1.2), the modified Gross–Pitaveskii equation (MGPE) [29,28,23,37,41] is derived as

ih̄∂tψ =
[
− h̄2

2m
∇2 + V (x) + Ng0

(
|ψ |2 + g1∇2|ψ |2

)]
ψ, t ≥ 0, x ∈R

3 (1.3)

where N is the number of particles, V (x) is a real-valued external trapping potential and ‖ψ(x, t)‖ :=
√∫

Rd |ψ(x, t)|2 dx = 1.

In experiments, the confinement induced by the external potential might be strong in one or two directions. As a result, 
the BEC in 3D could be well described by the MGPE in 2D or 1D, respectively, by performing a proper dimension reduction 
[37,13,38]. Finally, we get the dimensionless modified GPE (MGPE) in d-dimensions (d = 1, 2, 3) as

i∂tψ =
[
−1

2
� + V (x) + β|ψ |2 − δ�(|ψ |2)

]
ψ, t ≥ 0, x ∈R

d, (1.4)

with energy

E(ψ(·, t)) :=
∫
Rd

[
1

2
|∇ψ |2 + V (x)|ψ |2 + β

2
|ψ |4 + δ

2
|∇|ψ |2|2

]
dx. (1.5)

It is easy to check that the L2-norm and the energy are conserved, i.e.

‖ψ(·, t)‖ ≡ ‖ψ(·,0)‖, E(ψ(·, t)) ≡ E(ψ(·,0)). (1.6)

A fundamental problem in studying BEC is to find its stationary states, especially the ground state which is the stationary 
state with the lowest energy. Mathematically speaking, the ground state φβ,δ

g := φ
β,δ
g (x) of the MGPE (1.4) is defined as the 

minimizer of the energy functional (1.5) under the normalization constraint, i.e.

φ
β,δ
g := arg min

φ∈S
E (φ) , (1.7)

where S is defined as

S := {φ | ‖φ‖ = 1, E(φ) < ∞} . (1.8)

Eβ,δ
g := E(φ

β,δ
g ) is called the ground state energy. The Lagrangian of the problem (1.7) implies that the ground state φβ,δ

g

satisfies the following nonlinear eigenvalue problem

μφ =
[
−1

2
� + V (x) + β|φ|2 − δ�(|φ|2)

]
φ, (1.9)

where the corresponding eigenvalue (also named chemical potential) μ can be computed as

μ =
∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + β|φ|4 + δ

∣∣∣∇|φ|2
∣∣∣2

]
dx. (1.10)

It is worth noticing that, when δ �= 0, the ground state exists if and only if δ > 0 [10]. And the ground state can be 
chosen to be nonnegative. Furthermore, the ground state is unique if we have both β > 0 and δ > 0 [10]. When δ = 0, the 
MGPE degenerates to the GPE. And the existence and uniqueness of the ground state has been thoroughly studied and we 
refer the readers to [7,8,36]. Therefore, throughout the paper, we will only consider the case δ ≥ 0 for the computation of 
the ground state of MGPE and assume the ground state is real-valued.

Numerous numerical methods have been proposed to compute the ground state of the classical GPE, such as a Runge–
Kutta spectral method with spectral discretization in space and Runge–Kutta type integration in time by Adhikari et al. in 
[34], Gauss–Seidel-type methods in [21] by Lin et al., a finite element method by directly minimizing the energy functional 
in [16] by Bao and Tang, a regularized newton method by Wu, Wen and Bao in [43], a preconditioned nonlinear conjugate 
gradient method [5] by Antoine et al., an adaptive finite element method [24] and a Riemannian conjugate gradient method 
[25] for the rotating BEC. Among all the methods, the normalized gradient flow method, also named the imaginary time 
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