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In this work, we propose a new Galerkin–Petrov method for the numerical solution 
of the classical spatially homogeneous Boltzmann equation. This method is based on 
an approximation of the distribution function by associated Laguerre polynomials and 
spherical harmonics and test in a variational manner with globally defined three-
dimensional polynomials. A numerical realisation of the algorithm is presented. The 
algorithmic developments are illustrated with the help of several numerical tests.
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1. Introduction

In this paper, we propose a new Galerkin–Petrov method for the numerical solution of the classical spatially homoge-
neous Boltzmann equation. This method is based on an approximation of the distribution function by associated Laguerre 
polynomials and spherical harmonics. The test functions are polynomials defined globally in R3. This choice leads to a rapid 
numerical scheme with a high spectral accuracy for smooth solutions.

Deterministic methods for the Boltzmann equation have been extensively studied in the last decades. Overview of these 
methods can be found, for example, in the book of V. Aristov [3] and in a more recent review by A. Narayan and A. Klöck-
ner [39]. Since the pioneering work of D. Goldstein, B. Sturtevant and J.E. Broadwell [27], many authors proposed different 
ideas on how to derive a discrete version of the Boltzmann collision operator [40], [48], [51], [46], [41], [42]. In [34] the 
authors studied the difference scheme for a mixture of gases. L. Pareschi and G. Russo [44], [45] considered deterministic 
spectral methods for the Boltzmann equation based on the Fourier transform. In our paper, we limit our consideration to a 
particular class of deterministic methods, namely, those based on mesh-free Galerkin–Petrov discretisation. The main diffi-
culty within the deterministic approximation of the Boltzmann collision integral, besides its high dimensionality, is the fact 
that a grid for the integration over the velocity space R3 is not suitable for the integration over the set of all directions, 
i.e., over the unit sphere S2. In the case of a regular tensor discretisation of the velocity space with n points in each di-
rection, only O(n) irregularly distributed integration points would belong to the unit sphere. A. Bobylev, A. Palczewski and 
J. Schneider [12] considered this direct approximation of the Boltzmann collision integral and showed that the corresponding 
numerical method is consistent. This method requires O(n7) arithmetical operations per time step and has the formal accu-
racy of O(n−1/2). A. Bobylev and S. Rjasanow considered the case of the Maxwell pseudo-molecules and utilised an explicit 
simplification of the Boltzmann equation for this model of interaction alongside with the Fast Fourier Transform (FFT) to 
develop a deterministic numerical method [13], [14]. Their method requires O(n4) arithmetical operations per time step and 
achieves the same low formal accuracy order of O(n−1/2). A similar method was proposed by L. Pareschi and B. Perthame 
in [43]. It appears to be the fastest known deterministic numerical method on a uniform grid. At the same time, its appli-
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cations are strongly restricted to the case of Maxwell pseudo-molecules. Considering the case of hard spheres, A. Bobylev 
and S. Rjasanow [15] developed an algorithm, where the integration over the unit sphere is completely separated from the 
integration over the whole space R3. The resulting scheme utilises fast evaluation of the generalised Radon and X-Ray trans-
forms via the FFT and requires O(n6 log(n)) operations per time step with the high formal accuracy of O(n−2). A further 
development of this approach in [24] led to spectral schemes for more general collision kernels with a higher efficiency. 
I. Ibragimov and S. Rjasanow in [30] used a special form of the Boltzmann collision operator, which led to a possibility 
to omit numerical integration over the unit sphere. This idea was later used by I.M. Gamba and S.H. Tharkabhushanam 
[25], [26], to handle the granular inelastic Boltzmann equation. It was developed further in the recent paper [23] for most 
general collision cross-section with anisotropic angular scattering that includes grazing collisions approximating the Landau 
collision operator. These methods have also been extended to treat systems of Boltzmann equations for gas mixtures and 
multi-energy level gases (see [38], [53]). In these extensions of the scheme, the Langrange multiplier method is employed 
to enforce the total conservation properties associated with the mixture. The first result on error estimates and convergence 
to Boltzmann–Maxwell equilibrium states for Lagrangian based conservative spectral methods for the Boltzmann equation 
with elastic interactions and hard potential with angular cut-off collision kernels was published in [2]. A survey of this 
subject can be found in [22]. While the majority of authors use an uniform grid in the velocity space, in [29] A. Heintz, 
P. Kowalczyk and R. Grzhibovskis have used a non-uniform grid.

Reviews of an already substantial amount of publications on the Discrete Velocity Models (DVM) for the Boltzmann 
equation can be found in [7] and in [9]. Constructive ideas in this area have been recently proposed by H. Babowsky and 
his co-authors in [4], [5]. Two recent ideas regarding the deterministic solution of the Boltzmann equation are the use of 
the Galerkin schemes based on global basis functions, see [33] and unpublished manuscript [21] and the approximation by 
means of three-dimensional algebraic tensors [31], [6]. We refer to the recent monograph by B. Shizgal [50] devoted to the 
spectral methods and an enormous amount of cited literature therein.

The approach most similar to ours can be found in [19]. Its realisation for a rather simple isotropic situation is published 
in [20].

The same approximation, with a non-zero mean velocity, has been used in the recent work [17] for a theoretical study 
of the linearised Boltzmann collision operator. However, it is also necessary to mention classical papers from 1935 by 
D. Burnett [16] where the Laguerre polynomials have been used and from 1949 by H. Grad [28] with an approximation 
of the distribution function by the use of the Hermite polynomials. He was also able to compute the moments of this 
approximation exactly.

The main advantages of our method in contrast to the previous methods are:

• We use basis and test functions globally defined in the velocity space. No discretisation of the velocity space for the 
approximation of the distribution function is necessary. Thus the number of degrees of freedom is very low, in our tests 
it was at most 729.

• The mass matrix and the collision matrices are precomputed for the given collision kernel and for different degrees 
of the polynomials. They can be used then for different initial conditions and different time integration schemes. This 
reduces the computational time significantly. The same matrices can be used for spatially inhomogeneous problems, 
see [32].

• The scheme is fully conservative by its nature. No additional work is necessary in contrast to our previous papers [14], 
[15], [30], [25], [26].

• The computation of the moments of the approximation can be done analytically due to the polynomial nature of the 
basis functions.

However, the choice of the basis functions as global polynomials, similar to the methods based on trigonometrical approxi-
mation, can not guarantee the positivity of the approximation. We don’t consider this drawback as serious since the negative 
values appearing in the approximation of the distribution functions are all in the tails and, therefore, are very small. See 
also the further remarks in Section 5 concerning the computation of the H-functional.

This paper is organised as follows. In Section 2, we give a short description of an initial value problem for the Boltzmann 
equation and present different collision kernels. In Section 3, an abstract version of Galerkin–Petrov method for a general 
bilinear operator is formulated. We describe a set of basis and test functions in terms of classical polynomials and spherical 
harmonics. Furthermore, the mass and collision matrices are presented in all details. A numerical realisation of the algorithm 
is described in Section 4. Here, we use a numerical integration for the entries of the mass and collision matrices and describe 
possible time integration schemes. Finally, in Section 5, we present the results of numerical computations done by the new 
method for different initial value problems and different collision kernels. Conclusions and an outlook can be found in 
Section 6.

2. Boltzmann equation

We consider the initial value problem for the classical spatially homogeneous Boltzmann equation

∂

∂t
f (t, v) = Q ( f , f )(t, v) , t ∈R+ , v ∈ R

3 , (1)
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