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We present an efficient formulation of the boundary element method (BEM) for calculation 
of two-dimensional pressure-driven Stokes flow in a doubly-periodic domain. In contrast 
to similar methods which require a priori knowledge of the mean fluid velocity, this 
formulation is based on knowledge of the mean pressure gradient only. We present a 
method of calculating the permeability tensor without the need to specify either mean 
velocity or pressure gradient. We discuss optimality of the splitting parameter in the 
doubly-periodic Green’s function, with regard to the numerical overhead required for the 
BEM, and in most cases find a 3–10 fold increase in computational efficiency compared to 
the splitting parameter used in standard BEM formulations.

© 2017 Published by Elsevier Inc.

1. Introduction

The Stokes equations provide a well-established approximation for flows with small Reynolds number, Re � 1. Stokes 
flow problems in spatially periodic domains are important to many applications [16,14,12]. Here, the fluid is driven through 
a periodic array of solid inclusions by a gradient in pressure (or gravity) pointing in a direction of periodicity.

The boundary element method (BEM) is well-suited to resolving such flows, especially those with a low ratio of boundary 
to fluid regions [13,5,18]. The main advantage of the method is the dimensional reduction from a problem defined on the 
d-dimensional fluid region � to one defined on the (d − 1)-dimensional fluid-solid boundary �. Such dimensional reduction 
results in more efficient employment of the collocation points and boundary elements when compared to conventional 
discretisation methods such as finite element and finite volume methods.

While conventional boundary element formulations use the mean fluid velocity to define such periodic flow problems, 
the mean pressure gradient is often the quantity measured experimentally, and so a boundary element formulation with 
pressure boundary conditions is desirable. To date, an efficient boundary element formulation for doubly-periodic two-
dimensional Stokes flow with pressure boundary conditions has not been developed.
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Fig. 1. A simple example of a 2D2P medium, where the dotted line represents the boundary of the unit cell.

Our motivation for seeking such a formulation is for use as a micro-scale model in a dual-scale modelling framework, 
such as one proposed by Alyaev et al. [3]. In this dual-scale framework, the macro-scale pressure gradient is used to specify 
boundary conditions on a micro-scale problem, and the mean velocity obtained by solving this problem is used to specify 
the macro-scale flux. Since such an algorithm would require the solution of many micro-scale problems, efficiency of the 
BEM solver is of key importance.

For a two-dimensional, doubly-periodic domain (2D2P; see Fig. 1), the prevailing BEM formulation in the literature [20]
does not depend explicitly on the pressure gradient, and instead requires knowledge of the mean fluid velocity. The in-
troduction of a nonzero mean pressure gradient by specifying pressure boundary conditions offers potential for a BEM 
formulation independent of an arbitrary mean velocity. Furthermore, the duality of the pressure and velocity formulations 
allows for a relationship, namely permeability, to be found between pressure gradient and mean velocity, independent of 
any fluid or flow parameters. Analytic solutions for Stokes flow past square and hexagonal arrays of circular, square and 
rounded hexagonal cylinders [22,28,29] can be used to test the BEM formulation, both with respect to pointwise velocity 
and to permeability.

A primary consideration is the efficiency of the method, especially in the calculation of the Green’s function. The 2D2P 
Green’s function [10,27] can be written as two quickly-converging sums, one over the physical lattice and one over the re-
ciprocal lattice, by using the Ewald summation technique [8]. This technique includes a splitting parameter α that controls 
the trade-off between fast physical convergence and fast reciprocal convergence. In this sense, fast convergence refers to the 
rate at which terms in the sum decay, not the speed of a computational algorithm. For a fixed tolerance, the relevant nu-
merical parameters are the splitting parameter and the truncation points of each sum. We refer to these as the convergence 
parameters, and note that specification of one of these defines the other two.

Values of α have been proposed that ensure the same rate of convergence between the sums [27] or a bias towards fast 
reciprocal convergence [10]. However, since the physical sum is much more computationally expensive to compute, giving 
bias towards fast physical convergence should increase computational efficiency, despite greatly increasing the requisite 
number of terms in the reciprocal sum.

Given the above motivation, the aim of the current work is to develop an efficient 2D2P BEM formulation for pressure-
driven Stokes flow that calculates both the velocity field and permeability tensor, and avoids any dependence on the 
unknown mean fluid velocity. The accuracy of this formulation will be verified and its efficiency will be benchmarked.

In § 2, we outline the context of our work within the literature, especially with regards to the BEM and 2D2P Green’s 
functions. We describe the current mean velocity-based BEM formulation and the current treatment of the convergence 
parameters. In § 3, we present dual formulations of the 2D2P BEM, derive the permeability by using the duality of these 
formulations, and detail an algorithm to approximate the optimal convergence parameters in the context of the BEM. In 
§ 4, we exhibit the accuracy of the pressure-based formulation and investigate the numerical overheads necessary for each 
approach to the convergence parameters.

2. Background

2.1. Boundary element method

We begin by providing a brief overview of the context and history of the development of the BEM. For a more detailed 
account, refer to Cheng and Cheng [6].

Green [9] showed that for linear partial differential equations, it is possible to use fundamental solutions (Green’s 
functions) to transform the differential equation of interest into an integral equation over the domain boundary. For the 
three-dimensional Laplace equation ∇2φ = 0, defined in a region V , Green used the fundamental solution 1/ |x − x0| to 
derive the following identity [6]:

φ(x0) = 1

4π

∫∫
∂V
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