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In this paper, a segregated algorithm is proposed to suppress high-frequency oscillations 
in the velocity field for incompressible flows. In this context, a new velocity formula 
based on a reconstruction of face fluxes is defined eliminating high-frequency errors. In 
analogy to the Rhie–Chow interpolation, this approach is equivalent to including a flux-
based pressure gradient with a velocity diffusion in the momentum equation. In order to 
guarantee second-order accuracy of the numerical solver, a set of conditions are defined 
for the reconstruction operator. To arrive at the final formulation, an outlook over the 
state of the art regarding velocity reconstruction procedures is presented comparing them 
through an error analysis. A new operator is then obtained by means of a flux difference 
minimization satisfying the required spatial accuracy. The accuracy of the new algorithm 
is analyzed by performing mesh convergence studies for unsteady Navier–Stokes problems 
with analytical solutions. The stabilization properties of the solver are then tested in a 
problem where spurious numerical oscillations arise for the velocity field. The results show 
a remarkable performance of the proposed technique eliminating high-frequency errors 
without losing accuracy.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the context of the Finite Volume Method (FVM), segregated algorithms are among the most popular strategies to 
couple pressure and velocity in Computational Fluid Dynamics (CFD). In these methodologies, the variables of the problem 
can be stored in the same or different spatial location, which gives place to grid arrangements known as collocated or 
staggered respectively. The staggered grids have the advantage of avoiding interpolations and thus prevent the appearance 
of spurious oscillations on the unknown fields. On the other hand, collocated grid arrangements are more suitable for 
unstructured meshes which are mandatory to address practical applications involving complex geometries.

One major disadvantage of collocated grids is the appearance of the aforementioned high-frequency oscillations due to 
a decoupling between pressure and velocity. This is related to the employment of central differencing for the discretization 
of the spatial derivatives. A common way to tackle these numerical issues is introducing a stabilizing effect on the pressure 
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equation through the so-called Rhie–Chow interpolation [1]. Since its development, this technique has been the most used 
alternative to mitigate pressure oscillations and it is still subject of several discussions regarding its accuracy and stability 
properties [2–8]. One of the main issues regarding this technique is that it does not guarantee non-oscillatory fields for 
all problem conditions. Oxtoby et al. [6] and Mencinger et al. [7] proposed new discretization rules to eliminate unphysical 
spikes at the interface with porous media in Volume Of Fluid techniques. Other authors proposed solutions involving adjust-
ments on the Rhie–Chow interpolation to mitigate these problems. In particular, Zhang et al. [8] put in evidence the flaws 
of the standard Rhie–Chow interpolation when the corrective terms on the mass conservation equations become sufficiently 
large. Such situation arises when dealing with discontinuous momentum sources. They propose a correction consisting on 
smoothing out the pressure gradient on cell faces by introducing the body forces in the calculation. In the same manner, 
Nordlund et al. [9] addressed similar problems and proposed two methods to mitigate spurious oscillations: one involving 
an adjustment of the porous resistivity in the cells near the interface and another one which introduces auxiliary pressure 
values in the same region. All these works propose particular solutions to eliminate oscillatory fields in different situa-
tions. However, for the velocity, a deeper study on the reasons that generate high-frequency oscillations still needs to be 
addressed, which is the main motivation of this work.

In this context, a new approach to mitigate spurious high-frequency velocity oscillations in pressure-velocity coupling 
algorithms for incompressible flows is presented; this formulation is inspired by the non-oscillatory nature of the fluxes in a 
collocated FVM. More precisely, the velocity field is defined by a face-to-cell reconstruction of the fluxes which must satisfy 
certain conditions to preserve second-order accuracy. Reconstruction operators can be obtained through different proce-
dures, such as flux difference minimization [10–12] or weighted average [13]. Here, a reconstruction operator is designed 
based on a flux difference minimization to obtain an oscillation-free algorithm.

The paper is organized as follows: On Section 2, the general framework of the standard SIMPLE (Semi-Implicit Method for 
Pressure-Linked Equations) family algorithms is presented, including a study of the reasons for the velocity oscillations and 
a solution based on face-to-cell reconstruction. Section 3 presents an overlook of some reconstruction procedures followed 
by the development of a new reconstruction method. In Section 4, two benchmark cases are solved to demonstrate that 
the new formulation is second-order accurate. Section 5 shows the stabilization properties solving a porous media flow 
problem. Finally, the conclusions are presented in Section 6.

2. Theoretical background

2.1. Segregated algorithms on collocated grids

The continuum incompressible Navier–Stokes equations may be presented as:

∇· u = 0, (2.1)
∂u

∂t
+ ∇· (uu) = −∇p + ν ∇2u + �, (2.2)

where p = P
ρ

, P is the pressure field, u = (u, v, w) is the velocity field, ρ is the mass density, ν is the kinematic viscosity 

and � is a momentum source term (e.g. a body force). Based on the Finite Volume Method [14], Eqs. (2.1) and (2.2) may 
be discretized as:∑

f

u f ·S f =
∑

f

F f = 0, (2.3)

aP u P +
∑

N

aN uN = bP u0
P + �P − ∇p P , (2.4)

where the subscript P indicates the cell-centered value of the current cell, N indicates neighbor cells values and f refers to 
the face values. The term bP u0

P is the contribution of the previous time-step and is function of the temporal scheme. The 
face-normal vector S f has the magnitude of the face area and points out of the cell, F f is the velocity flux at the face f and 
aP and aN are the diagonal and off-diagonal momentum matrix coefficients respectively. The operator ∇p P is a Gauss-based 
gradient of the pressure computed using first neighbors values of that field. Isolating u P from Eq. (2.4),

u P = H P − 1

aP
∇p P , (2.5)

where the term H P is computed as,

H P = bP u0
P + �P −∑N aN uN

aP
. (2.6)

One way to solve Eqs. (2.3) and (2.4) for u and p consists on addressing one equation at a time, update one of the 
unknown fields, solve the remaining equation and iterate the sequence. These techniques are known as segregated methods, 
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