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An exponential time-integrator scheme of second-order accuracy based on the predictor–
corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear 
partial differential equations pertaining to fluid dynamics. The effective and efficient 
implementation of PCEXP is realized by means of the Krylov method. The linear stability 
and truncation error are analyzed through a one-dimensional model equation. The 
proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous 
Galerkin method in both two and three dimensions. The effectiveness and efficiency of the 
PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy 
and efficiency of the PCEXP scheme are verified and validated through comparisons with 
the explicit third-order total variation diminishing Runge–Kutta scheme (TVDRK3), the 
implicit backward Euler (BE) and the implicit second-order backward difference formula 
(BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller 
than the BDF2 scheme does, while maintaining the expected acceleration at the same 
time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency 
comparable to the implicit schemes for steady flows.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Significant progress has been made recently in the development of high-order spatial discretization methods in com-
putational fluid dynamics (CFD), such as the discontinuous Galerkin (DG) [1–8], multi-moment constrained finite-volume 
(MCV) [9], flux reconstruction (FR) or correction procedure via reconstruction (CPR) method [10–12], and others [13–15]. 
These high-order techniques have exhibited a great potential as effective numerical solution methods amenable for efficient 
implementation on massively parallel high-performance computers. For complex geometries, an efficient solution, however, 
also depends on the availability of a fast time advancement solver. In contrast to a relative ubiquity of efficient techniques 
for spatial discretizations, efficient time-marching approaches for both steady and unsteady flows seem to be limited. Effi-
cient time-integration approaches are thus the focus of the present work.

For unsteady flows, explicit methods, such as Runge–Kutta (RK) approaches are prevalent for their simplicity. However, 
with highly clustered nonuniform meshes, the Courant–Friedrichs–Lewy (CFL) condition can severely limit the local time-

* Corresponding author at: Beijing Computational Science Research Center, Beijing 100193, China and Department of Mathematics and Statistics, Old 
Dominion University, Norfolk, VA 23529, USA.

E-mail addresses: shujie @csrc .ac .cn (S.-J. Li), luols1989 @gmail .com (L.-S. Luo), zjw @ku .edu (Z.J. Wang), ju @math .sc .edu (L. Ju).

https://doi.org/10.1016/j.jcp.2018.03.020
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.03.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:shujie@csrc.ac.cn
mailto:luols1989@gmail.com
mailto:zjw@ku.edu
mailto:ju@math.sc.edu
https://doi.org/10.1016/j.jcp.2018.03.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.03.020&domain=pdf


S.-J. Li et al. / Journal of Computational Physics 365 (2018) 206–225 207

step size. The restriction due to the CFL condition is particularly acute for direct numerical simulation (DNS) and large-eddy 
simulation (LES) of turbulent flows, which usually require very fine grids of high aspect ratios in near-wall regions. Thus, 
the restriction due to the CFL condition becomes a critical bottleneck in computational efficiency for explicit time-marching 
schemes.

To enhance the computational efficiency of explicit time-marching schemes, it is desirable to relax or to remove the 
limitation of the CFL condition. To this end, a class of schemes based on the exponential time integration shows a great 
potential [16–29]. In contrast to usual explicit time-marching schemes, these schemes allow much larger time-step sizes 
while maintaining excellent numerical stability.

In explicit time-marching methods, information cannot propagate beyond the localities constrained by the CFL condition 
in each time step. In exponential time-marching methods, however, information is propagated to the entire computational 
domain instantaneously through the global Jacobian, similar to implicit methods, thus significantly alleviating the restriction 
on time-step size imposed by the CFL condition, if not eliminating it altogether. As mentioned previously, a variety of 
schemes based on the exponential integration have been developed already (cf., e.g., [16–29]). While the basic idea of 
exponential integration has been adopted in the aforementioned methods, the existing algorithms differ from each other in 
some aspects. There are two types of exponential schemes depending on the treatment of the nonlinear term, i.e., explicit 
and implicit. The classic ETD scheme is a typical explicit scheme (cf., e.g., [16]), while the implicit integrator factor method is 
an implicit one (cf., e.g., [21–23]), which can usually alleviate the stiffness due to the nonlinear term but requires nonlinear 
iterations in each time step.

While most of the exponential schemes are applied to specialized equations [16–27] with either scalar exponentials 
or constant matrix exponentials, such as the applications to semilinear parabolic equations [28,29], and relatively few are 
applied to practical CFD problems (cf., e.g., [30–32]) with time-dependent full matrix exponential computations. There are 
some key issues, such as the computational efficiency for steady problems and the temporal accuracy for unsteady problems, 
have yet to be fully investigated. The overarching goal of the present work is to develop an efficient and time-accurate 
exponential scheme to solve multi-dimensional fluid dynamic equations. Specifically, we develop a second-order exponential 
time-integrator scheme to solve the Euler equations for steady and unsteady problems in both two and three dimensions, 
and assess its accuracy and computational efficiency by comparing with several well-known explicit and implicit approaches.

The remainder of this paper is organized as follows. Section 2 discusses the construction of a second-order exponen-
tial scheme based on the predictor–corrector methodology, denoted as PCEXP, and its efficient implementation through the 
Krylov method. Section 3 describes a linear stability and error analysis of PCEXP for a simple model equation in one di-
mension. Section 4 presents the application of PCEXP to the Euler equations discretized with a high-order DG method in 
space. Section 5 presents the numerical results of this work including three inviscid flow problems: (a) the transportation 
of an isentropic vortex in 2D with a constant velocity; (b) subsonic flow over a NACA0012 airfoil with a Mach number 
Ma = 0.63; and (c) subsonic flow over a sphere in 3D with Ma = 0.3. The numerical results obtained with PCEXP are 
compared with third-order Total Variation Diminishing Runge–Kutta scheme (TVDRK3), implicit backward Euler (BE), and 
second-order backward difference formula (BDF2). Finally, Section 6 summarizes and concludes this work. Appendix A pro-
vides the details of the Jacobian matrices.

2. Exponential time-integrator schemes

In this section, we first develop a predictor–corrector based the second-order exponential time-integrator scheme, and 
then discuss the efficient implementation through the Krylov method. We also carry out a linear stability analysis of the 
proposed scheme applied to a model equation in 1D to demonstrate its feasibility of time marching with large time steps.

2.1. Predictor–corrector exponential time-integrator scheme (PCEXP)

We start with the following semi-discrete system of autonomous ordinary differential equations which may be obtained 
from a spatial discretization:

du

dt
= R(u), (1)

where u = u(t) ∈ R
K denotes the vector of the solution variables and R(u) ∈ R

K the right-hand-side term which may be 
the spatially discretized residual terms of the discontinuous Galerkin method used in this work. The dimension K is the 
degrees of freedom which can be very large for 3D problems. Without loss of generality, we consider u(t) in the interval of 
one time step, i.e., t ∈ [tn, tn+1].

We apply the term splitting method [24] to treat Eq. (1):

du

dt
= Jnu + N(u), (2)

where the subscript n indicates the value evaluated at t = tn , Jn denotes the Jacobian matrix Jn := ∂R(u)/∂u|t=tn :=
∂R(un)/∂u, un := u(tn), and N(u) := R(u) − Jnu denotes the remainder, which in general is nonlinear. Equation (2) admits 
the following formal solution:
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