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The Finite Volume method with Exact two-material Riemann Problems (FIVER) is both a 
computational framework for multi-material flows characterized by large density jumps, 
and an Embedded Boundary Method (EBM) for computational fluid dynamics and highly 
nonlinear Fluid–Structure Interaction (FSI) problems. This paper deals with the EBM aspect 
of FIVER. For FSI problems, this EBM has already demonstrated the ability to address 
viscous effects along wall boundaries, and large deformations and topological changes 
of such boundaries. However, like for most EBMs – also known as immersed boundary 
methods – the performance of FIVER in the vicinity of a wall boundary can be sensitive 
with respect to the position and orientation of this boundary relative to the embedding 
mesh. This is mainly due to ill-conditioning issues that arise when an embedded interface 
becomes too close to a node of the embedding mesh, which may lead to spurious 
oscillations in the computed solution gradients at the wall boundary. This paper resolves 
these issues by introducing an alternative definition of the active/inactive status of a mesh 
node that leads to the removal of all sources of potential ill-conditioning from all spatial 
approximations performed by FIVER in the vicinity of a fluid–structure interface. It also 
makes two additional contributions. The first one is a new procedure for constructing 
the fluid–structure half Riemann problem underlying the semi-discretization by FIVER of 
the convective fluxes. This procedure eliminates one extrapolation from the conventional 
treatment of the wall boundary conditions and replaces it by an interpolation, which 
improves robustness. The second contribution is a post-processing algorithm for computing 
quantities of interest at the wall that achieves smoothness in the computed solution and its 
gradients. Lessons learned from these enhancements and contributions that are triggered 
by the new definition of the status of a mesh node are then generalized and exploited 
to eliminate from the original version of the FIVER method its sensitivities with respect 
to both of the position and orientation of the wall boundary relative to the embedding 
mesh, while maintaining the original definition of the status of a mesh node. This leads 
to a family of second-generation FIVER methods whose performance is illustrated in this 
paper for several flow and FSI problems. These include a challenging flow problem over 

* Corresponding author at: Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035, USA.
E-mail address: cfarhat @stanford .edu (C. Farhat).

https://doi.org/10.1016/j.jcp.2018.03.028
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.03.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:cfarhat@stanford.edu
https://doi.org/10.1016/j.jcp.2018.03.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.03.028&domain=pdf


D.Z. Huang et al. / Journal of Computational Physics 365 (2018) 74–104 75

a bird wing characterized by a feather-induced surface roughness, and a complex flexible 
flapping wing problem for which experimental data is available.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Embedded or Immersed Boundary Methods (EBMs or IBMs) continue to gain popularity for the solution of Computational 
Fluid Dynamics (CFD) and Fluid–Structure Interaction (FSI) problems [1–13]. Such methods can be described as Eulerian CFD 
and FSI methods. They compute flows on non-body-fitted CFD meshes in which discrete representations of wet surfaces of 
obstacles are embedded or immersed. They are also known under other names, including fictitious domain [14] and Carte-
sian [2] methods. For CFD problems in general, they are attractive because they introduce a high degree of automation in the 
task of mesh generation, and a significant flexibility in the meshing of complex geometries. It should be mentioned however 
that for turbulent flow computations at high Reynolds numbers, the benefits of this increased level of automation can be 
offset by the tendency of highly automated meshing processes to generate uniform elements around embedded discrete 
surfaces. Indeed, for the same mesh resolution near the wall boundaries, such a tendency leads to embedding meshes that 
are larger than counterparts that can be generated using well-designed body-fitted meshing methods. Nevertheless, in the 
presence of rough aerodynamic or hydrodynamic surface textures – such as those encountered, for example, in the geomet-
rical descriptions of heat shields of re-entry vehicles, iced aircraft wings, feather-covered bird wings, and submarine hulls 
with biofouling – where the characteristic length scale of the roughness is much smaller than that of the wet surface of 
the obstacle, the highly automated nature of meshing for EBMs becomes a significant advantage over body-fitted meshing. 
By far however, the major advantages of EBMs are materialized for FSI applications characterized by large structural dis-
placements, rotations, deformations, and/or topological changes [15,9,16]. For such applications, alternative methods based 
on, for example, Lagrangian [17,18] or Arbitrary Lagrangian–Eulerian (ALE) approaches [19–24] are either cumbersome or 
simply unfeasible. For example, Lagrangian approaches can be impractical for high-speed viscous flows. ALE approaches rely 
on mesh motion and deformation schemes [25–28]. Typically, these are unreliable for viscous FSI problems where the mesh 
elements in the vicinity of a fluid–structure interface – also referred to in the remainder of this paper as the material in-
terface – are usually small and stretched. Furthermore, they lack robustness with respect to large structural motions and/or 
deformations, and are simply unfeasible in the event of topological changes such as those encountered during topology 
optimization [29] or those induced by crack propagation [13].

By definition, EBMs work with non-body-fitted meshes. Consequently, they incorporate a special treatment of the wall 
boundary (or transmission) conditions. For this purpose, some EBMs modify the stencil of the spatial approximation in the 
neighborhood of the embedded discrete surface [30]. Others rely for this purpose on forcing functions derived from physical 
arguments [1] or the adopted semi-discretization process [3]. Other similar methods perform the treatment of the wall 
boundary conditions based on the cut-cell methodology [31], where each mesh cell cut by the embedded discrete surface 
is reshaped to account only for its portion that lies within the physical fluid domain.

Recently, an alternative approach for designing EBMs that differs radically from those briefly characterized above was 
proposed in [9]. This approach is based on an idea that was first presented in [32] for the treatment of fluid–fluid interfaces 
in multi-phase flow problems, in the context of vertex-based Finite Volume (FV) methods. While developed primarily for 
compressible fluid flows, it is equally applicable to incompressible flows. It differentiates itself from other EBMs in three 
significant ways. First, it can operate on both structured and unstructured meshes. Second, it treats the velocity and pressure 
boundary conditions at the embedded discrete surface simultaneously, rather than disjointly. Third, instead of relying pri-
marily on semi-empirical interpolation and/or extrapolation procedures for performing the treatment of the wall boundary 
conditions, it enforces the desired value of the fluid velocity at a point on a wall boundary and recovers the value of the 
fluid pressure at this location by solving there an appropriate, local, one-dimensional, exact, fluid–structure half Riemann 
problem. For this reason, this alternative approach for designing EBMs was named the Finite Volume method with Exact 
two-phase or two-material Riemann Problems, or simply FIVER.

FIVER was originally designed in the context of explicit time-discretizations for the solution of compressible, inviscid, 
multi-phase flow problems characterized by simple Equations of State (EOSs) but featuring large density jumps [32]. Then, 
it was generalized in [33] to arbitrary EOSs by incorporating in its core a computationally efficient sparse grid tabulation 
method for the numerical solution of one-dimensional, two-phase Riemann problems. Next, FIVER was extended in [9] to 
multi-material FSI problems by generalizing the concept of a one-dimensional two-phase Riemann problem to that of a local 
fluid–structure Riemann problem. This extension transformed FIVER into an Eulerian EBM for FSI that is capable of handling 
large structural deformations and arbitrary topological changes. Unlike many EBMs that operate only on Cartesian meshes 
[2,34], FIVER can operate on arbitrary meshes. This makes it particularly suitable for complex geometries and viscous flows. 
In [11], it was validated for the dynamic implosion of underwater cylindrical shells. Specifically, FIVER was reported in [11]
to reproduce with good accuracy the large deformations of collapsing cylindrical structures and the compression waves that 
emanate from them. In [35], this method was extended to implicit time-discretizations. In [36,37], it was generalized to 
turbulent viscous FSI problems, and in [13], it was extended again to the solution of FSI problems with dynamic fracture. In 
[38], FIVER was first shown to be – like many other EBMs – inconsistent in the neighborhood of a material interface, and 
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