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We propose an extension of the discretization approaches for multilayer shallow water 
models, aimed at making them more flexible and efficient for realistic applications to 
coastal flows. A novel discretization approach is proposed, in which the number of vertical 
layers and their distribution are allowed to change in different regions of the computational 
domain. Furthermore, semi-implicit schemes are employed for the time discretization, 
leading to a significant efficiency improvement for subcritical regimes. We show that, 
in the typical regimes in which the application of multilayer shallow water models 
is justified, the resulting discretization does not introduce any major spurious feature 
and allows again to reduce substantially the computational cost in areas with complex 
bathymetry. As an example of the potential of the proposed technique, an application to a 
sediment transport problem is presented, showing a remarkable improvement with respect 
to standard discretization approaches.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Multilayer shallow water models have been first proposed in [2] to account for the vertical structure in the simulation 
of large scale geophysical flows. They have been later extended and applied in [5,4,6]. This multilayer model was applied in 
[3] to study movable beds by adding an Exner equation. A different formulation, to which we will refer in this paper, was 
proposed in [26], which has several peculiarities with respect to previous multilayer models. The model proposed in [26]
is derived from the weak form of the full Navier–Stokes system, by assuming a discontinuous profile of velocity, and the 
solution is obtained as a particular weak solution of the full Navier–Stokes system. The vertical velocity is computed in a 
postprocessing step based on the incompressibility condition, but accounting also for the mass transfer terms between the 
internal layers. In [25], this multilayer approach is applied to dry granular flows, for which an accurate approximation of 
the vertical flow structure is essential to approximate the velocity-pressure dependent viscosity.

Multilayer shallow water models can be seen as an alternative to more standard approaches for vertical discretizations, 
such as natural height coordinates (also known as z-coordinates in the literature on numerical modelling of atmospheric and 
oceanic flows), employed e.g. in [11,16,19], terrain following coordinates (also known as σ -coordinates in the literature), see 
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Fig. 1. Sketch of the domain and of its subdivision in a constant number of layers.

e.g. [31], and isopycnal coordinates, see e.g. [9,18]. Each technique has its own advantages and shortcomings, as highlighted 
in the discussions and reviews in [1,11,12,32]. Multilayer approaches are appealing, because they share some of the advan-
tages of z-coordinates, such as the absence of metric terms in the model equations, while not requiring special treatment 
of the lower boundary. On the other hand, multilayer approaches share one of the main disadvantages of σ -coordinates, 
since they require, at least in the formulations employed so far, to use the same number of layers independently of the fluid 
depth. Furthermore, an implicit regularity assumption on the lower boundary is required, in order to avoid that too steeply 
inclined layers arise, which would contradict the fundamental hydrostatic assumption underlying the model.

In this work, we propose two strategies acting at the same time to make multilayer models more efficient and fully com-
petitive with their z- and σ -coordinates counterparts. On one hand, we propose a novel discretization approach, in which 
the number of vertical layers can vary over the computational domain. We show that, in the typical regimes in which the 
application of multilayer shallow water models is justified, the resulting discretization does not introduce significant errors 
and allows to reduce substantially the computational cost in areas with complex bathymetry. In this way, multilayer ap-
proaches become fully competitive with z-coordinate discretizations for large scale, hydrostatic flows. Furthermore, efficient 
semi-implicit discretizations are applied for the first time to the discretization of the free surface gradients and the flow 
divergence in multilayer models. Notice that a semi-implicit approach for the discretization of vertical viscosity and friction 
terms has instead been introduced in [4,26]. In order to further simplify the presentation, we only introduce the discretiza-
tion for an x–z vertical slice, even though both, the multilayer approach (see [26]) and any of the methods presented, can 
be generalized to the full three dimensional case. In this paper, again for simplicity, we have restricted our attention to con-
stant density flows. An extension to variable density problems in the Boussinesq regime will be presented in a forthcoming 
paper. However, as a first step, we present in Appendix A a detailed description of the coupled discretization of a tracer 
equation. Not only it is the basis for the variable density extension, but, as shown in [30], the coupling of this equation to 
the discretized continuity equation is not a trivial issue and it is very important to verify compatibility conditions between 
the discrete continuity equation and the discrete tracer equations.

In section 2, the equations defining the multilayer shallow water models of interest will be reviewed. In section 3, the 
spatial discretization is introduced in a simplified framework, showing how the number of layers can be allowed to vary 
over the computational domain. In section 4, some semi-implicit time discretizations are introduced for the model with a 
variable number of layers. Results of a number of numerical experiments are reported in section 5, showing the significant 
efficiency gains that can be achieved by combination of these two techniques. Some conclusions and perspectives for future 
work are presented in section 6.

2. Multilayer shallow water models

We consider the multilayer shallow water model described pictorially in Fig. 1. In this approach, N subdivisions �α, α =
1, . . . , N of the domain � are introduced in the vertical direction. We denote by hα the height of the layer α and by 
h = ∑N

α=1 hα the total height. Note that � = ⋃N
α=1 �α and that each subdomain �α is delimited by time dependent 

interfaces �α± 1
2
(t), that are assumed to be represented by the one valued functions z = zα± 1

2
(t, x). These interfaces can 

be written as zα+1/2 = z1/2 + ∑α
β=1 hβ , depending on the thicknesses hα , where z1/2 = b(x) is a function describing the 

bottom.
Given a function f we also define as in [26], for α = 0, 1, ..., N ,

f −
α+ 1

2
:= ( f |�α(t) )|�

α+ 1
2

(t) and f +
α+ 1

2
:= ( f |�α+1(t) )|�

α+ 1
2

(t) .

Obviously, if the function f is continuous,

fα+ 1
2

:= f |�
α+ 1

2
(t) = f +

α+ 1
2

= f −
α+ 1

2
.

Note that this subdivision corresponds to the vertical discretization of the domain, which, a priori, is not related to the 
characteristics neither of the flow nor of the domain.
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