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Maxwell’s equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a 
simple cubic as an alternative to the standard Yee method for improvements in numerical 
dispersion characteristics and grid isotropy of the method. Explicit update equations and 
numerical dispersion expressions, and the stability criteria are derived. Also, several tools 
available to the standard Yee method such as PEC/PMC boundary conditions, absorbing 
boundary conditions, and scattered field formulation are extended to this method as well. 
A comparison between the FCC and the Yee formulations is made, showing that the 
FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are 
provided to demonstrate both the accuracy and grid isotropy improvement of the method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Finite-Difference Time-Domain (FDTD) [1] is an elegant yet simple numerical method for electromagnetics which 
has been around for many decades and is a component of many in-house codes and commercial software. In this method, 
the computational region is discretized into a cubic lattice so that it can be modeled on a computer. In the standard Yee 
grid, electric and magnetic field components are staggered in both space and time. Discretization inevitably introduces 
some error. One of the sources of error is numerical dispersion, which causes the phase velocity of propagating waves to 
be dependent on the frequency as well as the angle of propagation [2]. Consequently, a spherical wavefront is deformed 
after traveling some distance. This grid anisotropy error, unfortunately, is cumulative and can be troublesome in large scale 
simulations.

There have been several methods proposed for improving numerical dispersion characteristics and grid anisotropy. One 
approach is to utilize higher order methods [3–9] where additional neighboring fields – often from further away in the 
cardinal directions – are used in the update equations for more accuracy. A comprehensive overview and comparison of the 
higher order methods may be found in [10]. Although the absolute dispersion error can be significantly reduced, the grid 
anisotropy is not necessarily improved as the relative phase velocity difference at different propagation angles remains the 
same. One of the major drawbacks of such methods is that the implementation at material interfaces becomes much more 
complicated, as the computational stencil is no longer strictly local.

Another approach is to modify the coefficients in the update equations in a way that the dispersion error is optimized 
for particular propagation angles and/or ranges of frequencies [11–17]. These provide some flexibility to the user, and the 
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concept can be applied to both higher order methods and to alternative grids, but their efficacy is more difficult to extend 
to applications requiring broadband and/or wide-angled simulation results.

In another approach, Forgy and Chew [18] used a superposition of two different Finite-Difference methods on an over-
lapped lattice which complement each other’s dispersion anisotropy to create a more isotropic algorithm. Another way of 
modifying the dispersion characteristics is discretizing Maxwell’s equation on a lattice other than the cubic grid. It has been 
reported [2] that a staggered scheme on a hexagonal grid in two dimensions leads to reduced errors and better isotropy 
compared to Cartesian grid. Keranen et al. in Reference [19] provide mathematical arguments on various space-filling dual 
grids upon which Yee-like schemes can be constructed. Using the perspective of cochains and covectors, they then go on to 
show how the choice of space-filling shapes can allow one to predict the error bounds on such a Yee-like scheme, and how 
shapes that better fill a circle (in 2D) or sphere (in 3D) will provide better error control. However, they only demonstrate 
this with examples in 2D.

In three dimensions, using a lattice that more closely resembles a sphere, for example, could potentially alleviate the grid 
anisotropy problem. In [2] and [20] the suggestion is made to use a body-centered cubic lattice, also known as Sommerville 
mesh, for this purpose. Reference [21] also used a type of face-centered cubic (FCC) lattice to perform simulations for scalar 
wave equation in 3D, and reported improvements in grid isotropy. In an attempt to extend this to Maxwell’s equation, a 
nodal-based method was developed in [22] with collocated fields of the same kind, but staggered magnetic and electric 
fields in space with respect to each other. However, nodal-based schemes are known to be prone to spurious solutions [23]. 
A step by step iteration of the fields, for example produced by two electric dipoles close to each other but opposite in sign, 
reveals that the method in [22] produces wrong fields even though the method is stable.

Recently Rabina et al. [24] developed an FDTD scheme on FCC lattice as well as on body-centered cubic and a number 
of other natural crystals using Discrete Exterior Calculus (DEC) [25]. They report that the average numerical wavelength 
error is the least for different propagation angles on FCC lattice compared to a number of other structured lattices, but the 
body-centered cubic lattice maintained the same order of error for a wider range of propagation angles, meaning better grid 
isotropy.

In this work, we utilize discrete exterior calculus, similar to [24], to discretize Maxwell’s equations on FCC lattice. How-
ever, instead of using incidence matrices and taking an unstructured mesh approach, we derive Yee-like explicit update 
equations. The analytical numerical dispersion expression will also be derived. Several tools available to the Yee method 
will be extended to FCC grid such as absorbing boundary conditions, perfect electric conductors (PEC)/perfect magnetic 
conductors (PMC), and scattered field formulation, in a manner similar to [26]. Numerical examples will be provided to 
demonstrate the accuracy, stability and improvement in grid isotropy of the method. Preliminary results of this work were 
previously published in [27]. This paper will go much further into the details of the derivation of the method, as well as 
added analysis.

In what follows, we first briefly discuss Discrete Exterior Calculus, followed by derivation of the update equations, and 
the dispersion relationship. Next, implementation of PEC/PMC boundary conditions and absorbing boundary conditions are 
presented, and then scattered field formulation, interpolation rule, near-field to far-field transformation, and finally, the 
numerical results.

2. Discrete exterior calculus

Discrete Exterior Calculus is an elegant mathematical tool which aims to discretize differential forms rather than vector 
fields. It is closely related to the FDTD method in its integral form [28] and the “generalized FDTD” [29] and the work of 
Teixeira et al. [30]. Writing out Maxwell’s equations in vector form shows no explicit difference between the flux densities 
and field intensities. However, in the differential forms formulation this difference is more pronounced, and in the discrete 
case is actually visible.

A good review of differential forms can be found in [31]. Although a space–time formulation can be derived [32], in 
this work because of simplicity we focus only on the space forms in a manner similar to [26]. Maxwell’s equations in the 
differential forms formulation are written as

∂t B = −dE − J∗ (1)

∂t D = +dH + J (2)

dB = ρ∗ (3)

dD = ρ (4)

D = �εE (5)

B = �μH (6)

where ∂t is the time derivative, and d is the exterior derivative, which is a generalization of gradient, divergence, and curl 
into one operator. Exterior derivative converts an (n)-form to (n + 1)-form. The field intensities E and H are considered 
1-forms whereas the fluxes D and B and current densities J and J∗ are 2-forms, and the charge densities ρ and ρ∗ are 
3-forms. A 0-form could for example be the static voltage V .
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