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Generalized eigenvalue problems are standard problems in computational sciences. They 
may arise in electromagnetic fields from the discretization of the Helmholtz equation by 
for example the finite element method (FEM). Geometrical perturbations of the structure 
under concern lead to a new generalized eigenvalue problems with different system ma-
trices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating 
conditions or during shape optimization. Directly solving the eigenvalue problem for each 
perturbation is computationally costly. The perturbed eigenpairs can be approximated us-
ing eigenpair derivatives. Two common approaches for the calculation of eigenpair deriva-
tives, namely modal superposition method and direct algebraic methods, are discussed in 
this paper. Based on the direct algebraic methods an iterative algorithm is developed for 
efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the 
eigenvalues and eigenvectors of the unperturbed geometry.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Generalized eigenvalue problems are of crucial relevance and a standard problem in computational sciences. Generalized 
eigenvalue problems arise e.g. from the discretization of the Helmholtz equation for electromagnetic fields by means of the 
finite element method. The eigenvectors of the generalized eigenvalue problem contain information on the field distribu-
tions of resonances of the structure under concern while the eigenvalues contain the frequencies of the resonances. These 
resonances are required to characterize the electromagnetic properties of the structure. The generalized eigenvalue prob-
lems are also widely encountered in mechanical systems [1–3] for instance in the modal analysis of mechanical structures 
such as the vibration of a cantilever beam. Geometrical perturbations of the structure lead to new eigenvalue problems 
with different system matrices. The geometrical perturbations may arise by the manufacturing tolerances during fabrication. 
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In addition, harsh operating conditions, e.g. cryogenic temperature for superconducting accelerators, can also deform the 
shape of the structure and thus shift the operating frequency. During the shape optimization in the design stage, the eigen-
value problem is formed and has to be solved for a large number of slightly different geometries. Solving the generalized 
eigenvalue problem for each case is computationally costly. Matrix perturbation methods are useful for efficiently calculat-
ing eigenvalues and eigenvectors of the perturbed or modified structure based on the eigenvalues and eigenvectors of the 
unperturbed structure.

The approximation of the perturbed eigenmodes can be treated numerically or analytically. Analytic perturbation meth-
ods in the context of electromagnetism are derived from the direct manipulation of Maxwell’s equations. Such methods 
approximate the perturbed modes by means of a set of initial modes of the unperturbed geometry [4–6]. The disadvantage 
of these methods is that a large number of modes of the unperturbed structure is needed to accurately characterize one par-
ticular mode of the perturbed structure. Furthermore, these methods require the perturbed geometry to be enclosed within 
the unperturbed geometry. In this paper numerical perturbation methods applied on generalized eigenvalue problems are 
studied.

Matrix perturbation theory applied on eigenvalue problems, often in literature referred to as eigenvalue reanalysis, 
has received much attention in last decades [7–16]. Baldwin and Hutton [7] reviewed the developments in modification 
techniques such as Rayleighs method, sensitivity and perturbation approaches prior to 1985. A high accuracy step-by-step 
perturbation method applied on generalized eigenvalue problem is presented in [8]. In this method, a large modification 
to the system matrices is divided into small changes and the perturbation analysis is carried out step-by-step in an it-
erative manner. A similar step-by-step perturbation technique is used in [13] for electromagnetic problems. In [10], the 
Kirsch combined approximation (CA) method for static displacement reanalysis [17] is combined with Rayleigh quotient to 
reanalyze the eigenvalues of modified structures. In [11], Kirsch applied the CA method to eigenproblem reanalysis. In this 
method, a transformation matrix is formed and used to project the system matrices into a lower dimensional subspace. The 
modified eigenvector is approximated by a reduced set of basis vectors and the coefficients are found by solving a reduced 
eigenproblem formed by projected system matrices. A new method for eigensolution reanalysis based on Neumann series 
expansion and epsilon-algorithm is introduced in [12]. In [14], it is shown that sensitivity data such as first and second 
order eigenvector sensitivity data could be used as basis vectors for eigenmode reanalysis. An adaptive eigenvalue reanalysis 
method for a Genetic Algorithm to optimize mechanical structures is presented in [15].

The perturbed eigenpairs can be approximated by means of the eigenpair derivatives. Two common approaches for the 
calculation of the eigenpair derivatives are modal superposition methods and direct algebraic methods. The idea behind 
modal superposition method is similar to the analytic methods, i.e. expressing the eigenvector derivative as a superposition 
of the unperturbed eigenvectors [18]. In contrast, direct methods calculate the eigenvector derivatives by solving a linear 
system of equations so that only the eigenpair whose derivative is to be calculated is required. In 1976, Nelson [19] intro-
duced a powerful yet simple algorithm for the calculation of eigenvector derivatives for distinct eigenvalues of the standard 
eigenvalue problem. Nelson’s method, unlike previous methods which required computing all or most of the eigenvec-
tors, needs only those eigendata that are to be differentiated. Nelson presented his approach for non-symmetric standard 
eigenvalue problems. The method preserves the band structure of the matrices. Dailey [20] presented a reformulation of 
the method for generalized eigenvalue problems with symmetric matrices. Nelson’s method however works only for dis-
tinct eigenvalues. Ojalvo [21] presented a method for calculating eigenpair derivatives in case of repeated eigenvalues. The 
method was further completed by Mills-Curran [22] and Dailey [20]. In [23,24], the calculation of the eigenpair derivatives 
for special cases, where eigenvalues and eigenvalue derivatives are repeated, is presented. An algorithm for the calculation 
of eigenpair derivatives for asymmetric damped systems with distinct and repeated eigenvalues is presented in [25,26]. 
A very simple and efficient method is also presented by Lee and Jung [27,28] for the computation of eigenpair derivatives 
for symmetric eigenvalue problems. The method finds the eigenvector derivative by solving an algebraic equation with a 
symmetric coefficient matrix.

The major contributions of this paper are as following: Firstly, it is revised that the eigenpair derivatives can be used in 
the perturbation analysis for approximating the eigenpairs of a perturbed system. Secondly, based on the direct methods 
for the calculation of the eigenpair derivatives, an iterative algorithm is developed to efficiently calculate the eigenpairs of 
a perturbed structure. This is the most important part of the paper. Finally, the equivalence of the first-order numerical 
approximation of the eigenfrequency with the Slater’s perturbation theorem, as an analytical counterpart, is shown.

This paper is organized as follows: Section 2 describes the transfer of the Helmholtz equation to the generalized eigen-
value problem by means of the finite element method (FEM). Section 3 explains the approximation of perturbed eigenpairs 
by eigenpair derivatives. This section is composed of two parts: In Subsection 3.1 the modal superposition method for the 
calculation of the eigenpair derivative is presented and the drawbacks are briefly discussed. In Subsection 3.2 an iterative 
algebraic algorithm for the calculation of perturbed eigenpairs is developed. The modal superposition method and proposed 
iterative algorithm are tested on a circular waveguide in Subsection 4.1 and 4.2.1 respectively. The iterative algebraic method 
is also tested on an accelerating cavity model as an application example in Subsection 4.2.2 to illustrate the accuracy and 
efficiency of the proposed method. In the appendix of this paper, the analytical and numerical perturbation methods are 
briefly compared.
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