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This paper addresses uncertainty quantification (UQ) for problems where scalar (or low-
dimensional vector) response quantities are insufficient and, instead, full-field (very high-
dimensional) responses are of interest. To do so, an adaptive stochastic simulation-based 
methodology is introduced that refines the probability space based on Grassmann manifold 
variations. The proposed method has a multi-element character discretizing the probability 
space into simplex elements using a Delaunay triangulation. For every simplex, the high-
dimensional solutions corresponding to its vertices (sample points) are projected onto the 
Grassmann manifold. The pairwise distances between these points are calculated using 
appropriately defined metrics and the elements with large total distance are sub-sampled 
and refined. As a result, regions of the probability space that produce significant changes 
in the full-field solution are accurately resolved. An added benefit is that an approximation 
of the solution within each element can be obtained by interpolation on the Grassmann 
manifold. The method is applied to study the probability of shear band formation in a bulk 
metallic glass using the shear transformation zone theory.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Over the last several decades, the use of high-dimensional physics-based computational models (high-fidelity models) 
to assess the behavior of complex physical systems has become ubiquitous. Using models of increasing fidelity for the 
description of the physical system helps ensure that the requisite information to understand the physics of the system is 
available but may come at great computational cost. Given uncertainties in the model input or the parameters of the model 
itself, the problem is set in a probabilistic framework in order to quantify the uncertainty in the behavior/response of the 
physical system. This process, referred to as uncertainty quantification (UQ) becomes tremendously expensive with the use 
of high-fidelity models as it requires many repeated model simulations.

Given these computational constraints, it is essential to carefully select the points at which the solution is evaluated. 
Over the past 20+ years, numerous approaches have been proposed to efficiently sample a probability space in order to 
reduce the required number of simulations. These methods differ in their approach ranging from those that are statisti-
cal in nature (i.e. employing Monte Carlo simulations) to those using so-called surrogate models or reduced-order models 
(ROMs). Statistical methods generally refer to those methods that sample randomly according to some variance reduction 
strategy that usually serves to improve the space-filling properties of the samples (e.g. Latin hypercube sampling) [1]. Sur-
rogate modeling approaches aim to develop a simpler mathematical function that is inexpensive to evaluate and accurately 
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Nomenclature

σ̄ Magnitude of deviatoric stress
� Matrix representation of a point H on TX
ω spin
�,�,X,Y Orthonormal basis on V(p, n) representing a 

point on G(p, n)

� Diagonal matrices of singular values of the so-
lution matrix F

σ Cauchy stress tensor
σ 0 Deviatoric stress
� Diagonal matrix of principal angles θ
ξ Vector of independent random variables uni-

formly distributed on [0, 1]
χ Effective disorder temperature
χ∞ Saturation value of effective temperature
� Typical activation barrier
δ(�i,� j) Distance between points �i and � j on man-

ifolds with different dimensions
Ẋ0 Initial derivative for a geodesic path on 

G(p, n)

ε0 Typical local strain at STZ transition
ιn() Inclusion mapping from Rn → R

n+1

P Probability measure
S Diagonal matrices of singular values corre-

sponding to a SVD
γ (z) Geodesic path on G(p, n) indexed on z ∈ [0, 1]
F σ -algebra of events
G(,∞) Infinite Grassmann manifold
G(∞,∞) Doubly infinite Grassmann manifold
G(p,n) Grassmann manifold of p-dimensional sub-

spaces of Rn

H Subspace of Rn of dimension p on TX
O(p) Orthogonal group of p × p matrices
TX Tangent space at X
V(p,n) Compact Stiefel manifold of p-dimensional or-

thonormal bases in Rn

X Subspace of Rn of dimension p on G(p, n)

X0 Initial point for a geodesic path on G(p, n)

X1 End point for a geodesic path on G(p, n)

μ Shear modulus
μχ Mean effective temperature
ν Poisson’s ratio
� Sample space
ωk Simplex in �
�+(), �−() Schubert varieties
ωsubk Sub-simplex of ωk
ρ Density
σ Singular value
σχ Standard deviation of effective temperature
σy Yield stress
τ0 Molecular vibration timescale
C Fourth-order elastic stiffness tensor
D rate-of-deformation tensor
Del elastic rate-of-deformation tensor
Dpl plastic rate-of-deformation tensor
F Solution matrix of the full-model of dimension 

n f × m f
Ip Identity matrix of size p
Q Orthogonal matrix
s Vector of random variables arbitrarily dis-

tributed on �

U Matrix of left singular orthonormal basis vec-
tors corresponding to a SVD

V Matrix of right singular orthonormal basis vec-
tors corresponding to a SVD

v velocity
vik Vertex i of simplex ωk
θ Principal angle
θref Threshold average principal angle
�̃ Right singular vectors of the interpolated solu-

tion matrix F̃
�̃ Left singular vectors of the interpolated solu-

tion matrix F̃
�̃ Matrix of singular values of �̃
�̃ Matrix of singular values of the interpolated 

solution matrix F̃
�̃ Interpolated point on the tangent space
�̃ Typical activation volume
F̃ Approximation of the solution matrix F
Ũ Left singular vectors of �̃
Ṽ Right singular vectors of �̃
θ̃ Average principal angle
d̃ Average total distance across all elements
ε Machine epsilon
Cnd Unit hypercube of dimension nd
c0 Specific heat-like quantity
cχ Coefficient of variation of effective tempera-

ture
cs Shear wave speed
Dχ Rate dependent diffusivity
Dk Total Grassmann distance for element ωk
dG(,)(�0,�1) Distance on G(n, p) between points �0

and �1
Dth Threshold total Grassmann distance
E Elastic modulus
ez STZ formation energy
fs Probability density of parameters s
K Bulk modulus
kB Boltzmann constant
l Refinement level
lχ Length scale of effective temperature varia-

tions
ld Diffusion length scale
n Number of degrees of freedom
nc Number of candidate elements for refinement
nd Number of random variables
ne Number of elements
n f × m f = n Dimension of the solution matrix
ns Number of samples
nref Number of elements selected for refinement
O () Asymptotic notation
r Rank of a matrix
S Parameter space
Sc Configurational entropy
T Temperature
t time
U B velocity of boundaries
Uc Configurational energy
Uc Potential energy
Vωk Volume of element ωk
tol Tolerance threshold for SVD
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