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We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to 
the underlying microstructure dynamics. In particular, a continuum model of polymeric 
fluids is constructed without a pre-specified constitutive relation, but instead it is actively 
learned from mesoscopic simulations where the dynamics of polymer chains is explicitly 
computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of 
polymer chains, the continuum approach (based on the finite volume method) provides the 
transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and 
in turn DPD returns an effective constitutive relation to close the continuum equations. 
In this multiscale modeling procedure, we employ an active learning strategy based on 
Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, 
where adaptively selected DPD simulations are performed only as necessary. Numerical 
experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, 
modeled at the mesoscopic level by bead-spring chains. The results show that only five 
DPD simulations are required to achieve an effective closure of the continuum equations 
at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one 
additional DPD simulation is required for constructing an extended GPR-informed model 
closure. Compared to traditional message-passing multiscale approaches, applying an active 
learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase 
the computational efficiency. Although the method demonstrated here obtains only a local 
viscosity from the polymer dynamics, it can be extended to other multiscale models of 
complex fluids whose macro-rheology is unknown.

© 2018 Published by Elsevier Inc.

1. Introduction

The main motivation for investigating non-Newtonian fluids is that no fluid is virtually Newtonian except some simple 
fluids such as air and water [1]. The distinguishing feature of non-Newtonian fluids is that the microstructures present in 
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variable rheological conditions are not only transient but can be easily changed by the application of low stresses [2]. Con-
sequently, non-Newtonian fluids usually have complex stress-strain rate relationships and their apparent viscosities depend 
on the transient shear rate. In particular, polymeric fluids are the most widely used industrial non-Newtonian fluids. Their 
non-Newtonian behavior stems from the chain-like molecular structure of polymers, whose length can be so long that the 
collective effect of structural reorganization of polymer chains affects the macroscale rheological properties [3]. Moreover, 
because the forces generated by the polymer relaxation depend on its original orientation, polymeric fluids can also exhibit 
significant memory effects, i.e., the stress tensor depends on the strain history [4]. As a result, unlike the linear constitutive 
relation of Newtonian fluids, the constitutive equation of non-Newtonian fluids becomes much more complicated [5], which 
makes the modeling of non-Newtonian fluids a challenging problem.

In continuum approaches, an expression for the stress tensor in terms of various kinematic tensors is needed in the mo-
mentum equation and also in the energy equation [6]. This problem is similar to that arising in modeling turbulent flows [7], 
where an empirical model is needed for computing the Reynolds stress tensor for subgrid contributions to shear stress. Un-
der the continuum hypothesis, various phenomenological models for the constitutive relation of non-Newtonian fluids have 
been developed to close the continuum equations. Examples include the power-law and Bingham plastics models [8], the 
Oldroyd-B model [9], the finitely extensible non-linear elastic-Peterlin (FENE-P) model [10,11] and the Phan-Thien–Tanner 
model [12], to name but a few.

Because the non-Newtonian properties are strongly related to the dynamics of underlying microscopic structures, it 
is a straightforward idea to couple the rheology of non-Newtonian fluids and the microscopic physics using multiscale 
simulations, in which a continuum approach is used to model the bulk behavior of polymeric fluids, while a microscopic 
model is used to describe the dynamics of underlying microstructures. In the present work, a microscopic model refers to an 
atomistic approach that completely resolves all the details of atoms; a mesoscopic model refers to a coarse-grained approach 
that drastically simplifies the atomistic dynamics by averaging out fast atomic motions and preserving collective molecular 
behaviors with fluctuations at a coarse-grained level; a macroscopic model refers to a continuum deterministic approach 
derived from the continuum hypothesis that neglects all molecular details and stochastic effects. Many research efforts have 
been devoted to coupling continuum equations to micro/meso-scale simulations. Bell et al. [13] combined a spectral method 
and Brownian dynamics to investigate the recovery of polymeric fluids after the cessation of shear flow. Wagner and Liu [14]
coupled continuum finite elements to molecular dynamics (MD) simulations, and tested their scheme on a one-dimensional 
lattice; Kojic et al. [15] then extended it by coupling finite elements to dissipative particle dynamics (DPD) simulations for 
simple fluids. Using the idea of domain decomposition, Fedosov and Karniadakis [16] developed a hybrid multiscale method 
(triple-decker) to concurrently couple atomistic–mesoscopic–continuum models, and Li et al. [17] coupled DPD simulations 
and a finite element method for the Couette flows of polymer solutions. Also, Moreno et al. [18] coupled a finite element 
model with smoothed DPD to capture the non-Newtonian behavior of blood flowing through arteries. Recently, Barnes 
et al. [19] constructed an effective equation of state for a finite element model from DPD simulations.

In general, there exist three main categories of multiscale approaches, namely sequential approaches, concurrent cou-
plings and adaptive resolution schemes [20,21]. In concurrent coupling and adaptive resolution schemes the time step is 
limited by the time step used for microscopic simulations, while the sequential approach also known as message-passing is 
more suitable for multiscale problems with apparent scale separation between macroscopic and microscopic systems [20]. 
In the present work, we consider the continuum system to be much larger than its microscopic counterpart, so that a 
macroscale element is large enough to contain a representative sample of the micro-system. Specifically, the continuum 
equations are solved by the finite volume method (FVM) whose benefits are both high computational efficiency and nu-
merical stability. The polymer fluid is modeled by bead-spring chains whose coarse-grained dynamics are computed by 
DPD – a method well suited for modeling mesoscopic phenomena with much greater efficiency than all-atom molecular 
dynamics [22–25].

In the multiscale coupling procedure, the continuum model of polymeric fluids will be constructed without a closed form 
of the constitutive model, which can be computed by performing DPD simulations where the dynamics of polymer chains 
is explicitly simulated. In this proof-of-concept study for demonstrating how to implement the active-learning scheme for 
multiscale simulation, we assume that the fluid is inelastic and can be descried as a generalized Newtonian fluid in the 
FVM system, so that the stress field can be computed from a steady shear flow in the DPD system. We note, however, 
that there are more rheological properties of non-Newtonian fluids beyond the shear stress that can be obtained from DPD 
simulations, such as the normal stress differences and the spectrum of relaxation times that can be used for modeling 
elasticity and fading memory in continuum approaches [26]. The on-the-fly communications between FVM and DPD solvers 
can be implemented seamlessly by using a multiscale universal interface (MUI) library [27]. In general, to obtain an accurate 
function of the non-Newtonian viscosity in terms of shear rate requires many DPD simulations [28], making this process 
computationally prohibitive as DPD simulations of polymer models are expensive. Hence, in this work we will mitigate this 
computational expense by employing an active learning strategy together with the Gaussian process regression (GPR) to ob-
tain the fluid’s non-Newtonian viscosity only when necessary. Gaussian process models are particularly useful for regression 
because they provide not only the mean function response but also the corresponding uncertainty, which naturally allows 
for an active learning paradigm so that new training points are optimally selected to minimize this uncertainty. As a result, 
in the proposed multiscale coupling framework, only a few expensive DPD simulations will be performed to provide the ef-
fective constitutive relation of the polymeric fluids to close the continuum equations. Consequently, the total computational 
efficiency will be significantly increased compared to traditional message-passing multiscale approaches.
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