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We present a multidimensional asymptotic preserving scheme for the approximation of 
a mixture of compressible flows. Fluids are modelled by two Euler systems of equations 
coupled with a friction term.
The asymptotic preserving property is mandatory for this kind of model, to derive a scheme 
that behaves well in all regimes (i.e. whatever the friction parameter value is). The method 
we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This 
imposes a multidimensional definition and analysis of the scheme.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A multifluid model is a model for a fluid mixture for which each fluid is described by its own full set of variables (for 
instance density, velocity and energy). The model is generally closed in a way that defines interactions between the con-
stituents, depending on the involved physics. These models are widely used in different communities. One very popular 
model of this kind is the Baer–Nunziato model [3] for deflagration-to-detonation transition of reactive flows. Many numer-
ical methods to approximate this model have been designed, we refer to a few of them [37,14,15,1,2]. Scannapieco and 
Cheng [38] also derive similar kind of model for turbulent flows and apply it to describe a mixing zone driven by Rayleigh–
Taylor or Richtmyer–Meshkov instabilities [12]. Such kind of model is also used in plasma physics to account for plasmas 
collision or Non-Local-Thermodynamic-Equilibrium (NLTE) Ion–Electron interactions [17,39]. Although all the analysis done 
in this paper can be applied to any of the former models, we are in particular interested in the latter application. In this 
context, multifluid models are a good approximation, in particular to account for the collision of two ion populations, each 
of them being at LTE. However, to our knowledge, these models are never used for plasma collisions. The reason for this is 
stated by R. Sentis in [39]: “The [...] system may be quite difficult to solve in two- or three-dimensional geometry, especially in the 
case when the friction coefficient [...] is large [...].” Consequently, a simplified model is in general preferred, in which the veloc-
ity gap between the two fluids is modelled by a diffusion process on the concentrations. Unfortunately, it implies empirical 
closures and exhibits bad behaviour at high temperatures (when the coupling between the ion populations is weak).

In the following, we explain why the classical schemes for the multifluid system fail to capture the strong coupling limit. 
It is in fact inherent to this kind of model and relies to the asymptotic preserving (AP) property [28–31] in the high friction 
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regime or infinite friction regime. In the former regime, the fluids interpenetration follows a diffusion law. In the latter one, 
the mixture evolves as a single fluid, see (4)–(5). If no attention is paid to these regimes, the scheme will fail to capture it 
at a reasonable calculation cost. Some authors [13,16,23] propose an asymptotic discretization for the system (1) in 1D in 
the Eulerian frame — multidimensional calculations being achieved by means of directional splitting —, but no asymptotic 
preserving scheme has been yet published for 2D unstructured meshes for this model. A similar ALE formalism is used 
to treat multifluid interaction in [11]. Authors use the Compatible Hydro scheme [8] and do not analyze the asymptotic 
preserving property since they mainly focus on the physics of the coupling.

In this paper, we propose a multidimensional scheme to approximate solutions of this kind of model, written in (1), 
which captures accurately the asymptotic regime. We want our scheme to be able to deal with Arbitrary-Lagrange–Euler 
(ALE) frame and unstructured meshes in order to properly handle highly deformed calculation domains. Even for simpler 
models, only few unstructured asymptotic preserving schemes have been developed (refer for instance to Berthon and 
Turpault [5] and Franck et al. [7,24]). The scheme we propose in Section 4 has connections with [25,26], where an Euler 
with friction system is studied in the limit of high friction for long time, providing a different kind of scaling. So, the 
proposed scheme is not a direct extension of [25] to the bi-fluid case. The scheme presented in this work is split into two 
steps. In the first step we solve two Euler systems of equations coupled by friction. Since each fluid has its own velocity, the 
Lagrangian mesh of each fluid will evolve separately during this step. Then, in the second step, the conservative variables 
vector of each of the fluids will be projected onto a common mesh (not necessarily identical to the initial mesh).

In the Section 2 of this paper, we recall the properties of the model we consider, that are conservation, hyperbolicity, 
and asymptotic limit model. In Section 3, we recall the basis of the solver (Glace [10] or Eucclhyd [35]) used to compute 
the Lagrangian step. The Section 4 describes the Lagrangian step of the proposed scheme. It is demonstrated that the 
scheme preserves the properties of conservation, stability and consistency with respect to the continuous model for all 
regimes (independently of the value of the friction parameter). Then in Section 5, our ALE strategy is described. Finally, 
Section 6 is devoted to numerical experiments on several problems (Sod shock tube, triple point and Rayleigh–Taylor). 
Some comparisons with a non-AP scheme are provided.

2. A two fluids model with friction

Let us consider a mixture of two fluids f1 and f2. In the following, we will denote by “multi-fluid model”, a model 
for which each fluid α ∈ { f1, f2} is represented by its own set of variables: (ρα, uα, Eα). Conversely, we will refer as 
“mono-fluid model”, a model describing a mixture where mean quantities are considered (ρ, u, E), each fluid position being 
precised by an additional equation on the concentration (e.g. χ := ρα

ρα+ρβ ).

In this part, we present a simplified version of Scannapieco–Cheng’s model where the interaction between the two 
constituents reduces to a friction term. In semi-Lagrangian coordinates, for each fluid α ∈ { f1, f2} (β denoting the other 
fluid), the model reads

ρα Dα
t τα = ∇ · uα,

ρα Dα
t uα = −∇pα − νρδuα,

ρα Dα
t Eα = −∇ · (pαuα) − νρδuα · u,

(1)

where ρα, uα and Eα respectively denote the mass density, the velocity and the total energy density of fluid α. Also, τα =
1

ρα denotes the specific volume. The pressure pα satisfies the equation of state pα := pα(ρα, eα), where eα , the internal 
energy density, is defined by eα := Eα − 1

2 ‖uα‖2. The total density ρ and the mean velocity u are defined as ρ := ρα + ρβ

and ρu := ραuα +ρβuβ . The term δuα is the velocity difference, the δ(·)α operator being defined by δφα = −δφβ = φα −φβ . 
Finally, ν is the friction parameter. Also, remark that the Lagrangian derivative Dα

t := ∂t + uα · ∇ , is obviously not the same 
for each fluid.

The entropy ηα defined by Gibbs formula T αdηα = deα + pαdτα satisfies the following entropy inequality

T α Dα
t ηα ≥ ν

τα

τβ
δuα · δuα ≥ 0. (2)

Prior to establishing a numerical scheme that discretizes this set of six equations, we recall some properties of the model 
itself.

Property 1 (Conservation). The model (1) is conservative in volume and mass for each fluid. Also, it is conservative in the sum of 
momenta and in the sum of the total energies of the two fluids.

Proof. Conservation of mass and volume is obvious since the first equation of (1) is the continuity equation written for 
each fluid.

Conservation of momenta sum and total energies sum require more cautiousness, since Lagrangian derivative are not the 
same for each fluid. To establish them one rewrites (1) in an Eulerian framework.
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