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We consider in this paper the mathematical and numerical modeling of reflective boundary 
conditions (BC) associated to Boltzmann–Poisson systems, including diffusive reflection 
in addition to specularity, in the context of electron transport in semiconductor device 
modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) 
schemes. We study these BC on the physical boundaries of the device and develop a 
numerical approximation to model an insulating boundary condition, or equivalently, a 
pointwise zero flux mathematical condition for the electron transport equation. Such 
condition balances the incident and reflective momentum flux at the microscopic level, 
pointwise at the boundary, in the case of a more general mixed reflection with momentum 
dependant specularity probability p(�k). We compare the computational prediction of 
physical observables given by the numerical implementation of these different reflection 
conditions in our DG scheme for BP models, and observe that the diffusive condition 
influences the kinetic moments over the whole domain in position space.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of electronic transport in modern semiconductor devices can be described by the semiclassical Boltzmann–
Poisson (BP) model

∂ f i

∂t
+ 1

h̄
∇�k εi · ∇�x f i − qi

h̄
�E · ∇�k f i =

∑
j

Q i, j, (1.1)

∇�x · (ε ∇�x V ) =
∑

i

qiρi − N(�x), �E = −∇�x V , (1.2)

where f i(�x, �k, t) is the probability density function (pdf) over phase space (�x, �k) of a carrier in the i-th energy band in posi-
tion �x, with crystal momentum h̄�k at time t . The collision operators Q i, j( f i, f j) model i-th and j-th carrier recombinations, 
collisions with phonons or generation effects. �E(�x, t) is the electric field, V (�x, t) is the electric potential, εi(�k) is the i-th 
energy band surface, the i-th charge density ρi(t, �x) is the k-average of f i , −qi is the electric charge of the i-th carrier, N(�x)
is the doping profile, and ε is the electric permittivity of the material.
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The BP model for electron transport on a single conduction energy band for electrons has the form

∂ f

∂t
+ 1

h̄
∇�k ε(�k) · ∇�x f − q

h̄
�E(�x, t) · ∇�k f = Q ( f ), (1.3)

∇�x · (ε ∇�x V ) = q
[
ρ(�x, t) − N(�x)] , �E = −∇�x V , (1.4)

with the quantum mechanical electron group velocity 1
h̄ ∇�k ε(�k), and the electron density ρ(�x, t) = ∫

��k
f (�x, �k, t) d�k. The col-

lision integral operator Q ( f ) describes the scattering over the electrons, where several mechanisms of quantum nature can 
be taken into account. In the low density regime, the collisional integral operator can be approximated as linear in f , having 
the form

Q ( f ) =
∫
��k

[
S(�k′, �k) f (t, �x, �k′) − S(�k, �k′) f (t, �x, �k)

]
d�k′ , (1.5)

where S(�k, �k′) is the scattering kernel, representing non-local interactions of electrons with a background density distribu-
tion. For example, in the case of silicon, one of the most important collision mechanisms are electron–phonon scatterings 
due to lattice vibrations of the crystal, which are modeled by acoustic (assumed elastic) and optical (non-elastic) non-polar 
modes, the latter with a single frequency ωp , given by

S(�k, �k′) = (nq + 1) K δ(ε(�k′) − ε(�k) + h̄ωp)

+ nq K δ(ε(�k′) − ε(�k) − h̄ωp) + K0 δ(ε(�k′) − ε(�k)) , (1.6)

with K , K0 constants for silicon. The symbol δ indicates the usual Dirac delta distribution corresponding to the well known 
Fermi’s Golden Rule [13]. The constant nq is related to the phonon occupation factor

nq =
[

exp

(
h̄ωp

K B T L

)
− 1

]−1

,

where K B is the Boltzmann constant and T L = 300 K is the lattice temperature.
The semi-classical Boltzmann description of electron transport in semiconductors is, for a truly 3-D device, an equation 

in six dimensions plus time when the device is not in steady state. The heavy computational cost is the main reason why 
the BP system had been traditionally solved numerically by means of Direct Simulation Monte Carlo (DSMC) methods [14]. 
However, after the pioneer work [15], in recent years, deterministic solvers to the BP system were proposed in [16–22]. 
These methods provide accurate results which, in general, agree well with those obtained from Monte Carlo (DSMC) simula-
tions, often at a fractional computational time. Moreover, these type of solvers can resolve transient details for the electron 
probability density function f , which are difficult to compute with DSMC simulators.

The initial methods proposed in [18–21] using weighted essentially non-oscillatory (WENO) finite difference schemes to 
solve the Boltzmann–Poisson system, had the advantage that the scheme is relatively simple to code and very stable even 
on coarse meshes for solutions containing sharp gradient regions. However, a disadvantage of the WENO methods is that it 
requires smooth meshes to achieve high order accuracy, hence it is not very flexible for adaptive meshes.

Motivated by the easy hp-adaptivity and the simple communication pattern of the discontinuous Galerkin (DG) methods 
for macroscopic (fluid level) models [23–26], it was proposed in [27,28] to implement a DG solver to the full Boltzmann 
equation, that is capable of capturing transients of the probability density function.

In the previous work [27,28], the first DG solver for (1.1)–(1.2) was proposed, and some numerical calculations were 
shown for one and two-dimensional devices. In [29], the DG-LDG scheme for the Boltzmann–Poisson system was carefully 
formulated, and extensive numerical studies were performed to validate the calculations. Such scheme models electron 
transport along the conduction band for 1D diodes and 2D double gate MOSFET devices with an analytic Kane energy band 
model.

A DG method for full conduction bands BP models was proposed in [30], following the lines of the schemes in [27–29], 
generalizing the solver that uses the Kane non-parabolic band and adapting it to treat the full energy band case. A pre-
liminary benchmark of numerical results shows that the direct evaluation of the Dirac delta function can be avoided, and 
so an accurate high-order simulation with comparable computational cost to the analytic band cases is possible. It would 
be more difficult or even unpractical to produce the full band computation with other transport scheme. It is worth to 
notice that a high-order positivity-preserving DG scheme for linear Vlasov–Boltzmann transport equations, under the action 
of quadratically confined electrostatic potentials, independent of the electron distribution, has been developed in [31]. The 
authors there show that these DG schemes conserve mass and preserve the positivity of the solution without sacrificing 
accuracy. In addition, the standard semi-discrete schemes were studied showing stability and error estimates.

The type of DG method discussed in this paper, as was done in [29], belongs to a class of finite element methods 
originally devised to solve hyperbolic conservation laws containing only first order spatial derivatives, e.g. [32–36]. Using 
a piecewise polynomial space for both the test and trial functions in the spatial variables, and coupled with explicit and 
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