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This work is concerned with spatial advection and diffusion discretization technology 
within the field of Computational Fluid Dynamics (CFD). In this context, a novel method 
is proposed, which is dubbed the Enhanced Taylor Advection–Diffusion (ETAD) scheme. 
The model equation employed for design of the scheme is the scalar advection–diffusion 
equation, the industrial application being incompressible laminar and turbulent flow. 
Developed to be implementable into finite volume codes, ETAD places specific emphasis 
on improving accuracy on stretched structured and unstructured meshes while considering 
both advection and diffusion aspects in a holistic manner. A vertex-centered structured 
and unstructured finite volume scheme is used, and only data available on either side of 
the volume face is employed. This includes the addition of a so-called mesh stretching 
metric. Additionally, non-linear blending with the existing NVSF scheme was performed in 
the interest of robustness and stability, particularly on equispaced meshes. The developed 
scheme is assessed in terms of accuracy – this is done analytically and numerically, via 
comparison to upwind methods which include the popular QUICK and CUI techniques. 
Numerical tests involved the 1D scalar advection–diffusion equation, a 2D lid driven cavity 
and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error 
reductions of up to 75%.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Finite volume methods are today the most widely used for the solution of the Navier–Stokes equations. Industrial prob-
lems are typically computationally demanding with complex geometries being prevalent. This means that the accuracy of 
the numerical methods used on the required stretched anisotropic computational meshes is of importance. Inherent to 
computational efficiency is discretization accuracy, with the advection and diffusion terms being of considerable impor-
tance. This is the focus of this paper, with specific emphasis to stretched meshes as these are often employed in practice. 
A vertex-centered finite volume framework will be employed similar to Malan and Lewis [1].

CFD advection discretization methods have to date been intensively researched, with various algorithms being the result. 
The majority of methods can be expressed within the context of either the Normalised Variable Diagram (NVD) [2], or 
the Total Variation Diminishing (TVD) scheme [3,4] (though this is not straightforward with the Characteristic Based Split 
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(CBS) scheme [5,6]). Both of these approaches have associated criteria that must be met by a scheme in order to ensure 
boundedness. The Convective Boundedness Criteria (CBC) [7] is used for the NVD, while the Flux-Limiting Diagram [8]
is used with the TVD scheme. Many schemes created before the popularisation of the two advection philosophies have 
subsequently been converted to be expressed as either an NVD or TVD scheme. The grouping of schemes into the two 
approaches has naturally helped analysis and comparison. It is also possible, and fairly simple, to express NVD schemes as 
TVD schemes, and vice versa.

The above advection discretization methods have historically been dominated by asymmetric, upwind-biased schemes 
that are defined as either linear or non-linear. Many non-linear schemes were developed by adapting existing linear 
schemes to conform to developed boundedness criteria. As such, linear schemes form the foundations of many advection 
discretization schemes. A convenient way of describing a linear method which also enables easy analysis and comparison, 
is as a member of what is known as the κ-Upwind class [9,10]. Of the many upwind methods developed, some have 
attained a greater degree of popularity. This paper focuses on those preferred for their accuracy, namely the Cubic-Upwind-
Interpolation (CUI, κ = 1

3 ) [11] and Quadratic-Upwind-Interpolation variants (QUICK, κ = 1
2 ) [12,13]: CUI is well known to 

be 3rd-order accurate on equispaced meshes. QUICK is 2nd-order accurate at vertexes. However, both methods deteriorate 
to 1st-order accuracy on stretched meshes.

The Normalised Variable and Space Formulation (NVSF) scheme [14,15] is, to the knowledge of the authors, the only 
documented finite volume scheme designed to maintain accuracy on non-equispaced grids. This method is marketed as 
achieving 3rd-order accuracy at a face, and 2nd-order accuracy at a node, for both equi- and non-equispaced grids. The 
NVSF method accounts for mesh stretching by calculating a nodal stretching ratio of the three nodes contained within the 
NVD, and using this ratio to optimise the κ-value.2 As a result, the accuracy at the face of the NVD is maximised. Interest-
ingly, though understandably, NVSF simplifies to QUICK on an equispaced grid (understandable because QUICK maximises 
accuracy at a face). In its original form, the NVSF method was applied to only structured meshes with collinear upwind 
and downwind nodes (the scheme is extended to general unstructured meshes in this paper). In addition, Waterson and 
Deconinck [16] dismiss the NVSF scheme, stating that it “increases the complexity of the resulting NVD scheme”. While this 
may be strictly true, it is still possible that the NVSF results in an increase in efficiency. We are therefore strong proponents 
of the method.

Industrial CFD involves a large range of practical applications, many of which require the use of non-equispaced struc-
tured and unstructured meshes. As described above, the vast majority of finite volume advection discretization schemes 
were, however developed using equispaced meshes as basis. In advancing on this, this paper intends to table a novel philos-
ophy aimed at increasing accuracy with regards to two key aspects of advection–diffusion problems. Firstly, non-equispacing 
is assumed as fundamental when designing the spatial discretization algorithms. Secondly, consideration is given to treating 
the advection and diffusion components in a more holistic manner. This stands in contrast to previous work which has taken 
a mutually exclusive attitude. To this end, this work aims to develop a novel, improved, and industrially relevant CFD ad-
vection discretization methodology for incompressible viscous flow systems. The methodology developed will be considered 
“improved” if:

• It results in a discretization methodology that displays a greater level of efficiency than that of currently used method-
ologies.

• It maintains both local and global conservation.
• It offers stability similar to that of the QUICK or NVSF methods.

It is worth noting that sparse implicit solution methods are employed in this work, with the solution of the sparse system 
being computationally dominant.

A methodology’s “efficiency” in CFD is typically taken as the ratio of accuracy to computational cost. This paper will 
focus on increasing the accuracy. When used as part of an implicit flow solver, however, it should not result in any signif-
icant increase in cost per iteration. Once again, in designing an industrially relevant methodology it is important, from an 
efficiency and parallel processing point of view, that locality of data is maintained. This is interpreted here to mean that 
only neighbouring nodal data is available when discretizing a face value. Accordingly, the order-of-accuracy (OoA) at the 
face is employed to develop the new scheme which – dubbed the Enhanced Taylor Advection–Diffusion (ETAD) method. The 
use of face accuracy as a metric for improved accuracy is viewed as more pragmatic (not a function of element topology), 
while it naturally results in a conservative scheme.

The section to follow, tables a critical error analysis of three existing methods made popular due their accuracy – these 
methods are CUI, QUICK and NVSF. Thereafter, the ETAD method is developed, followed by its analysis and evaluation. 
For this purpose the 1D advection–diffusion and 2D lid-driven cavity test cases are considered for a range of stretching 
ratios and advection–diffusion ratios (Reynolds for the 2D flow problem). In addition, the separated, turbulent flow over an 
aerofoil, is finally modelled to assess industrial robustness. A conclusion and appendices completes the paper.

2 For ease of comparison the NVSF method is cast into κ-Upwind format as per A.
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